Understanding and improving Yangtze River Basin summer precipitation prediction using an optimal multi-Physics ensemble

Yang ZHAO , Fengxue QIAO , Xin-Zhong LIANG , Jinhua YU

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (1) : 256 -277.

PDF (16171KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (1) : 256 -277. DOI: 10.1007/s11707-024-1118-x
RESEARCH ARTICLE

Understanding and improving Yangtze River Basin summer precipitation prediction using an optimal multi-Physics ensemble

Author information +
History +
PDF (16171KB)

Abstract

This study employs the regional Climate-Weather Research and Forecasting model (CWRF) to first investigate the primary physical mechanisms causing biases in simulating summer precipitation over the Yangtze River Basin (YRB), and then enhance its predictive ability through an optimal multi-physics ensemble approach. The CWRF 30-km simulations in China are compared among 28 combinations of varying physics parameterizations during 1980−2015. Long-term average summer biases in YRB precipitation are remotely correlated with those of large-scale circulations. These teleconnections of biases are highly consistent with the observed correlation patterns between interannual variations of precipitation and circulations, despite minor shifts in their primary action centers. Increased YRB precipitation aligns with a southward shifted East Asian westerly jet, an intensified low-level southerly flow south of YRB, and a south-eastward shifted South Asian high, alongside higher moisture availability over YRB. Conversely, decreased YRB precipitation corresponds to an opposite circulation pattern. The CWRF control configuration using the ensemble cumulus parameterization (ECP), compared to other cumulus schemes, best captures the observed YRB precipitation characteristics and associated circulation patterns. Coupling ECP with the Morrison or Morrison-aerosol microphysics and the CCCMA or CAML radiation schemes enhances the overall CWRF skills. Compared to the control CWRF, the ensemble average of these skill-enhanced physics configurations more accurately reproduces YRB summer precipitation’s spatial distributions, interannual anomalies, and associated circulation patterns. The Bayesian Joint Probability calibration to these configurations improves the ensemble’s spatial distributions but compromises its interannual anomalies and teleconnection patterns. Our findings highlight substantial potential for refining the representation of climate system physics to improve YRB precipitation prediction. This is notably achieved by realistically coupling cumulus, microphysics, and radiation processes to accurately capture circulation teleconnections. Further enhancements can be achieved by optimizing the multi-physics ensemble among skill-enhanced configurations.

Graphical abstract

Keywords

physics parameterization / regional climate model / downscaling skill enhancement / multi-physics ensemble / teleconnection / bias reduction

Cite this article

Download citation ▾
Yang ZHAO, Fengxue QIAO, Xin-Zhong LIANG, Jinhua YU. Understanding and improving Yangtze River Basin summer precipitation prediction using an optimal multi-Physics ensemble. Front. Earth Sci., 2024, 18(1): 256-277 DOI:10.1007/s11707-024-1118-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao J, Feng J (2016). Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins.Theor Appl Climatol, 123(3–4): 437–452

[2]

Bao J, Feng J, Wang Y (2015). Dynamical downscaling simulation and future projection of precipitation over China.J Geophys Res Atmos, 120(16): 8227–8243

[3]

Bao Y (2013). Simulations of summer monsoon climate over East Asia with a Regional Climate Model (RegCM) using Tiedtke convective parameterization scheme (CPS).Atmos Res, 134: 35–44

[4]

Chen H, Zhou T, Neale R B, Wu X, Zhang G J (2010). Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: sensitivity to modifications of the convection scheme.J Clim, 23(13): 3657–3675

[5]

Chen L, Frauenfeld O W (2014). A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections.J Geophys Res Atmos, 119(10): 5767–5786

[6]

Chen L, Liang X Z, DeWitt D, Samel A N, Wang J X (2016). Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system.Clim Dyn, 46(3–4): 879–896

[7]

Chen X, Wu P, Roberts M J, Zhou T (2018). Potential underestimation of future mei-yu rainfall with coarse-resolution climate models.J Clim, 31(17): 6711–6727

[8]

Choi H I, Kumar P, Liang X Z (2007). Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability.Water Resour Res, 43(4): W04414

[9]

Choi H I, Liang X Z (2010). Improved terrestrial hydrologic representation in mesoscale land surface models.J Hydrometeorol, 11(3): 797–809

[10]

Choi H I, Liang X Z, Kumar P (2013). A conjunctive surface–subsurface flow representation for mesoscale land surface models.J Hydrometeorol, 14(5): 1421–1442

[11]

Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Q J R Meteorol Soc, 137(656): 553–597

[12]

Ding Y, Chan J C (2005). The East Asian summer monsoon: an overview.Meteorol Atmos Phys, 89(1–4): 117–142

[13]

Feng J, Wei T, Dong W, Wu Q, Wang Y (2014). CMIP5/AMIP GCM simulations of East Asian summer monsoon.Adv Atmos Sci, 31(4): 836–850

[14]

Feng L, Zhou T, Wu B, Li T, Luo J J (2011). Projection of future precipitation change over China with a high-resolution global atmospheric model.Adv Atmos Sci, 28(2): 464–476

[15]

Fremme A, Sodemann H (2019). The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley.Hydrol Earth Syst Sci, 23(6): 2525–2540

[16]

Gan Y, Liang X Z, Duan Q, Choi H I, Dai Y, Wu H (2015). Stepwise sensitivity analysis from qualitative to quantitative: application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model.J Adv Model Earth Syst, 7(2): 648–669

[17]

Grell G, Dévényi D (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation.Geophys Res Lett, 29(14): 38–41

[18]

Gui S, Yang R, Cao J, Huang W (2020). Precipitation over East Asia simulated by ECHAM6.3 with different schemes of cumulus convective parameterization.Clim Dyn, 54(9–10): 4233–4261

[19]

Hersbach H, Bell B, Berrisford P, Horányi A, Sabater J M, Nicolas J, Radu R, Schepers D, Simmons A, Soci C (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5.ECMWF Newsl, 159: 17–24

[20]

Hu Y, Ha Y, Zhong Z, Sun Y, Zhu Y (2021). Interdecadal variation of biases in a regional climate model simulation of summer climate of East Asia.Int J Climatol, 41(S1): E26–E38

[21]

Huang R, Chen J, Wang L, Lin Z (2012). Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system.Adv Atmos Sci, 29(5): 910–942

[22]

Huang Y, Qian Y (2004). Relationship between South Asian high and characteristic of precipitation in mid-and lower-reaches of Yangtze River and North China.Plateau Meteorol, 23: 68–74

[23]

Jiang D, Hu D, Tian Z, Lang X (2020). Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon.Adv Atmos Sci, 37(10): 1102–1118

[24]

Jiang D, Tian Z, Lang X (2016). Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports.Int J Climatol, 36(3): 1114–1133

[25]

Jiang R, Sun L, Sun C, Liang X Z (2021). CWRF downscaling and understanding of China precipitation projections.Clim Dyn, 57(3–4): 1079–1096

[26]

Jiang X, Li Y, Yang S, Wu R (2011). Interannual and interdecadal variations of the South Asian and western Pacific subtropical highs and their relationships with Asian-Pacific summer climate.Meteorol Atmos Phys, 113(3–4): 171–180

[27]

Jiang Z, Li W, Xu J, Li L (2015). Extreme precipitation indices over China in CMIP5 models. Part I: model evaluation.J Clim, 28(21): 8603–8619

[28]

Kan M, Huang A, Zhao Y, Zhou Y, Yang B, Wu H (2015). Evaluation of the summer precipitation over China simulated by BCC_CSM model with different horizontal resolutions during the recent half century.J Geophys Res Atmos, 120(10): 4657–4670

[29]

Kosaka Y, Xie S P, Nakamura H (2011). Dynamics of interannual variability in summer precipitation over East Asia.J Clim, 24(20): 5435–5453

[30]

Kusunoki S, Arakawa O (2015). Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia?.J Clim, 28(14): 5601–5621

[31]

Li F, Lin Z (2015). Improving multi-model ensemble probabilistic prediction of Yangtze River valley summer rainfall.Adv Atmos Sci, 32(4): 497–504

[32]

Li P, Furtado K, Zhou T, Chen H, Li J, Guo Z, Xiao C (2020a). The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales.Clim Dyn, 55(1–2): 131–151

[33]

Li Q, Wang T, Wang F, Liang X Z, Zhao C, Dong L, Zhao C, Xie B (2020b). Dynamical downscaling simulation of the East Asian summer monsoon in a regional Climate-Weather Research and Forecasting model.Int J Climatol, 41: E1700–E1716

[34]

Li X, Lu R (2017). Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China.J Clim, 30(20): 8357–8374

[35]

Li Y, Yan D, Peng H, Xiao S (2021). Evaluation of precipitation in CMIP6 over the Yangtze River Basin.Atmos Res, 253: 105406

[36]

Liang X Z, Choi H I, Kunkel K E, Dai Y, Joseph E, Wang J X, Kumar P (2005a). Surface boundary conditions for mesoscale regional climate models.Earth Interact, 9(18): 1–28

[37]

Liang X Z, Kunkel K E, Meehl G A, Jones R G, Wang J X (2008b). Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections.Geophys Res Lett, 35(8): L08709

[38]

Liang X Z, Li Q, Mei H, Zeng M (2019b). Multi-grid nesting ability to represent convections across the gray zone.J Adv Model Earth Syst, 11(12): 4352–4376

[39]

Liang X Z, Samel A N, Wang W C (2002). China’s rainfall interannual predictability: dependence on the annual cycle and surface anomalies.J Clim, 15(17): 2555–2561

[40]

Liang X Z, Sun C, Zheng X, Dai Y, Xu M, Choi H I, Ling T, Qiao F, Kong X, Bi X, Song L, Wang F (2019a). CWRF performance at downscaling China climate characteristics.Clim Dyn, 52(3): 2159–2184

[41]

Liang X Z, Wang W C (1998). Associations between China monsoon rainfall and tropospheric jets.Q J R Meteorol Soc, 124(552): 2597–2623

[42]

Liang X Z, Wang W C, Samel A (2001). Biases in AMIP model simulations of the east China monsoon system.Clim Dyn, 17(4): 291–304

[43]

Liang X Z, Xu M, Gao W, Kunkel K, Slusser J, Dai Y, Min Q, Houser P R, Rodell M, Schaaf C B, Gao F (2005b). Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data.J Geophys Res, 110: D11107

[44]

Liang X Z, Xu M, Yuan X, Ling T, Choi H, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y, Wang J, Kunkel K, Gao W, Joseph E, Morris V, Yu T W, Dudhia J, Michalakes J (2012). Regional Climate-Weather Research and Forecasting Model (CWRF).Bull Am Meteorol Soc, 93(9): 1363–1387

[45]

Liang X Z, Zhang F (2013). The cloud–aerosol–radiation (CAR) ensemble modeling system.Atmos Chem Phys, 13(16): 8335–8364

[46]

Liang X Z, Zhu J, Kunkel K E, Ting M, Wang J X (2008a). Do CGCMs simulate the North American monsoon precipitation seasonal–interannual variability?.J Clim, 21(17): 4424–4448

[47]

Lin L, Gettelman A, Xu Y, Wu C, Wang Z, Rosenbloom N, Bates S C, Dong W (2019). CAM6 simulation of mean and extreme precipitation over Asia: sensitivity to upgraded physical parameterizations and higher horizontal resolution.Geosci Model Dev, 12(8): 3773–3793

[48]

Ling T, Xu M, Liang X Z, Wang J X, Noh Y (2015). A multilevel ocean mixed layer model resolving the diurnal cycle: development and validation.J Adv Model Earth Syst, 7(4): 1680–1692

[49]

Ma S, Zhou T, Dai A, Han Z (2015). Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013.J Clim, 28(17): 6960–6978

[50]

Ning L, Liu J, Wang B (2017). How does the South Asian High influence extreme precipitation over eastern China?.J Geophys Res Atmos, 122(8): 4281–4298

[51]

Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010). The impacts of climate change on water resources and agriculture in China.Nature, 467(7311): 43–51

[52]

Qiao F, Liang X Z (2015). Effects of cumulus parameterizations on predictions of summer flood in the Central United States.Clim Dyn, 45(3–4): 727–744

[53]

Qiao F, Liang X Z (2016). Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans.J Adv Model Earth Syst, 8(2): 764–785

[54]

Qiao F, Liang X Z (2017). Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States.Clim Dyn, 49(1–2): 225–247

[55]

Schepen A, Everingham Y, Wang Q J (2020). On the joint calibration of multivariate seasonal climate forecasts from GCMs.Mon Weather Rev, 148: 437–456

[56]

Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Wang W, Powers J G (2008). A description of the Advanced Research WRF version 3. Tech Rep.

[57]

Song F, Zhou T (2014a). The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: does air–sea coupling improve the simulations?.J Clim, 27(23): 8761–8777

[58]

Song F, Zhou T (2014b). Interannual variability of East Asian Summer Monsoon simulated by CMIP3 and CMIP5 AGCMs: skill dependence on Indian Ocean–Western Pacific anticyclone teleconnection.J Clim, 27(4): 1679–1697

[59]

Sun C, Liang X Z (2020a). Improving US extreme precipitation simulation: dependence on cumulus parameterization and underlying mechanism.Clim Dyn, 55(5–6): 1325–1352

[60]

Sun C, Liang X Z (2020b). Improving US extreme precipitation simulation: sensitivity to physics parameterizations.Clim Dyn, 54(11–12): 4891–4918

[61]

Sun C, Liang X Z (2023). Understanding and reducing warm and dry summer biases in the Central United States: improving cumulus parameterization.J Clim, 36(7): 2015–2034

[62]

Sun H, Wang A, Zhai J, Huang J, Wang Y, Wen S, Zeng X, Su B (2018). Impacts of global warming of 1.5 C and 2.0 C on precipitation patterns in China by regional climate model (COSMO-CLM).Atmos Res, 203: 83–94

[63]

Sun L, Liang X Z, Ling T, Xu M, Lee X (2020a). Improving a multilevel turbulence closure model for a shallow lake in comparison with other 1-D models.J Adv Model Earth Syst, 12: e2019MS001971

[64]

Sun L, Liang X-Z, Xia M (2020b). Developing the coupled CWRF-FVCOM modeling system to understand and predict atmosphere-watershed interactions over the Great Lakes region.J Adv Model Earth Syst, 12: e2020MS002319

[65]

Wang B, Wu R, Lau K (2001). Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific–East Asian monsoons.J Clim, 14(20): 4073–4090

[66]

Wang C, Liang X Z, Samel A N (2011). AMIP GCM simulations of precipitation variability over the Yangtze River Valley.J Clim, 24(8): 2116–2133

[67]

Wang H, Fan K, Sun J, Li S, Lin Z, Zhou G, Chen L, Lang X, Li F, Zhu Y, Chen H, Zheng F (2015). A review of seasonal climate prediction research in China.Adv Atmos Sci, 32(2): 149–168

[68]

Wang Q, Robertson D (2011). Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences.Water Resour Res, 47: W02546

[69]

Wang S, Zuo H (2016). Effect of the East Asian Westerly Jet’s intensity on summer rainfall in the Yangtze River Valley and its mechanism.J Clim, 29(7): 2395–2406

[70]

Wei W, Zhang R, Wen M, Kim B J, Nam J C (2015). Interannual variation of the South Asian High and its relation with Indian and East Asian Summer Monsoon rainfall.J Clim, 28(7): 2623–2634

[71]

Wu J, Gao X J (2013). A gridded daily observation dataset over China region and comparison with the other datasets.Chin J Geophys, 56: 1102–1111

[72]

Xin X, Wu T, Zhang J, Yao J, Fang Y (2020). Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon.Int J Climatol, 40(15): 6423–6440

[73]

Xu M, Liang X Z, Samel A, Gao W (2014). MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations.J Clim, 27(22): 8578–8596

[74]

Xuan S, Zhang Q, Sun S (2011). Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet.Adv Atmos Sci, 28(2): 387–397

[75]

Yang B, Zhang Y, Qian Y, Huang A, Yan H (2015). Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation.Clim Dyn, 44(5–6): 1661–1684

[76]

Yuan X, Liang X Z (2011a). Improving cold season precipitation prediction by the nested CWRF-CFS system.Geophys Res Lett, 38(2): L02706

[77]

Yuan X, Liang X Z (2011b). Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the contiguous United States at regional–local scales.J Hydrometeorol, 12(4): 579–599

[78]

Yun Y, Liu C, Luo Y, Liang X, Huang L, Chen F, Rasmmusen R (2020). Convection-permitting regional climate simulation of warm-season precipitation over eastern China.Clim Dyn, 54(3–4): 1469–1489

[79]

Zhai P, Zhang X, Wan H, Pan X (2005). Trends in total precipitation and frequency of daily precipitation extremes over China.J Clim, 18(7): 1096–1108

[80]

Zhang F, Liang X Z, Li J, Zeng Q (2013). Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects.J Geophys Res Atmos, 118(14): 7733–7749

[81]

Zhang S, S, Bao Y, Ma D (2015). Sensitivity of precipitation over China to different cumulus parameterization schemes in RegCM4.J Meteorol Res, 29(1): 119–131

[82]

Zhang S, Wang M, Wang L, Liang X Z, Sun C, Li Q (2023). Sensitivity of the simulation of extreme precipitation events in China to different cumulus parameterization schemes and the underlying mechanisms.Atmos Res, 285: 106636

[83]

Zhang W, Villarini G, Slater L, Vecchi G A, Bradley A A (2017). Improved ENSO forecasting using bayesian updating and the North American multimodel ensemble (NMME).J Clim, 30(22): 9007–9025

[84]

Zhang Y, Chen H (2016). Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: mean state, frequency–intensity relationship, diurnal cycle, and influencing factors.J Clim, 29(3): 1067–1089

[85]

Zhao G, Huang G, Wu R, Tao W, Gong H, Qu X, Hu K (2015). A new upper-level circulation index for the East Asian summer monsoon variability.J Clim, 28(24): 9977–9996

[86]

Zhu K, Xue M, Zhou B, Zhao K, Sun Z, Fu P, Zheng Y, Zhang X, Meng Q (2018). Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013–2014 summer season.J Geophys Res Atmos, 123(2): 1037–1064

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (16171KB)

Supplementary files

FES-24118-OF-ZY_suppl_1

760

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/