Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert

Xunming WANG , Danfeng LI , Bingqi ZHU , Zhenting WANG , Caixia ZHANG , Xin GENG , Likun HAN , Yang ZHENG , Diwen CAI

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 743 -751.

PDF (9663KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 743 -751. DOI: 10.1007/s11707-024-1115-0
RESEARCH ARTICLE

Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert

Author information +
History +
PDF (9663KB)

Abstract

Surface soil materials from the Gobi Desert were sieved into fraction groups of 0.063–0.125, 0.125–0.25, 0.25–0.5, 0.5–1, and 1–2 mm. These samples were placed in a field for a physical weathering and dust deposition experiment. In the natural Gobi Desert environment, the dust-sized fractions (< 0.063 mm in diameter) produced by physical weathering and via dust deposition in the above groups were 1387 ± 124, 702 ± 70, 698 ± 47, 742 ± 101, and 769 ± 75 g·m−2, respectively, from 18 October 2020 to 18 December 2021. Dust deposition during the same period was 611 ± 55 g·m−2. For the same respective groups, 5.32 ± 0.76%, 0.58 ± 0.27%, 0.53 ± 0.18%, 0.80 ± 0.52%, and 0.98 ± 0.31% (by weight) of the bulk samples were weathered into dust-sized fractions during the experimental period. The physical weathering intensities were 23.95%, 14.96%, 8.90%, and 2.81% by weight for fraction groups of 2–4, 4–8, 8–16, and > 16 mm, respectively. The fine-grained materials of the gravel were more sensitive to physical weathering than coarse materials. In natural environments, the processes of dust deposition and physical weathering were key factors affecting the surface topographical equilibrium of the Gobi Desert and dust emission in Asia.

Graphical abstract

Keywords

physical weathering / dust deposition / Gobi Desert / sand activity

Cite this article

Download citation ▾
Xunming WANG, Danfeng LI, Bingqi ZHU, Zhenting WANG, Caixia ZHANG, Xin GENG, Likun HAN, Yang ZHENG, Diwen CAI. Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert. Front. Earth Sci., 2024, 18(4): 743-751 DOI:10.1007/s11707-024-1115-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ban G, Ban Z, Ma X (1962). 105 A.D. History of the Han Dynasty. Beijing: Chung Hwa Book.

[2]

Buckman S, Morris R H, Bourman R P (2021). Fire-induced rock spalling as a mechanism of weathering responsible for flared slope and inselberg development.Nat Commun, 12(1): 2150

[3]

Camuffo D (1995). Physical weathering of stones.Sci Total Environ, 167(1−3): 1–14

[4]

Cooke R U (1970). Stone pavement in deserts.Ann Assoc Am Geogr, 60(3): 560–577

[5]

Degen T, Sadki M, Bron E, König U, Nénert G (2014). The HighScore suite.Powder Diffr, 29(S2): S13–S18

[6]

Dorn R I (2011). Revisiting dirt cracking as a physical weathering process in warm deserts.Geomorphology, 135(1−2): 129–142

[7]

Eppes M C, McFadden L D, Wegmann K W, Scuderi L A (2010). Cracks in desert pavement rocks: further insights into mechanical weathering by directional insolation.Geomorphology, 123(1−2): 97–108

[8]

Filonchyk M (2022). Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China.Chemosphere, 287: 132219

[9]

Goudie A S, Wright E, Viles H A (2002). The roles of salt (sodium nitrate) and fog in weathering: a laboratory simulation of conditions in the northern Atacama Desert, Chile.Catena, 48(4): 255–266

[10]

Hall K, Arocena J M, Boelhouwers J, Zhu L (2005). The influence of aspect on the biological weathering of granites: observations from the Kunlun Mountains, China.Geomorphology, 67(1−2): 171–188

[11]

Heumann M J, Johnson C L, Webb L E (2018). Plate interior polyphase fault systems and sedimentary basin evolution: a case study of the East Gobi Basin and East Gobi Fault Zone, southeastern Mongolia.J Asian Earth Sci, 151: 343–358

[12]

Hörz F, Cintala M J (1997). Impact experiments related to the evolution of planetary regoliths.Meteorit Planet Sci, 32(2): 179–209

[13]

Hülle D, Hilgers A, Radtke U, Stolz C, Hempelmann N, Grunert J, Felauer T, Lehmkuhl F (2010). OSL dating of sediments from the Gobi Desert, Southern Mongolia.Quat Geochronol, 5(2−3): 107–113

[14]

Inglis D R (1965). Particle sorting and stone migration by freezing and thawing.Science, 148(3677): 1616–1617

[15]

Jugder D, Shinoda M, Sugimoto N, Matsui I, Nishikawa M, Park S U, Chun Y S, Park M S (2011). Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia.Global Planet Change, 78(1−2): 14–22

[16]

Kobayashi T, Tateishi R, Alsaaideh B, Sharma R C, Wakaizumi T, Miyamoto D, Bai X, Long B D, Gegentana G, Maitiniyazi A, Cahyana D, Haireti A, Morifuji Y, Abake G, Pratama R, Zhang N, Alifu Z, Shirahata T, Mi L, Iizuka K, Yusupujiang A, Rinawan F R, Bhattarai R, Phong D X (2017). Production of global land cover data-GLCNMO2013.J Geogr Geol, 9(3): 1–15

[17]

Lamp J L, Marchant D R, Mackay S L, Head J W (2017). Thermal stress weathering and the spalling of Antarctic rocks.J Geophys Res Earth Surf, 122(1): 3–24

[18]

Leask H J, Wilson L (2003). Heating and cooling of rocks on Mars: consequences for weathering.In: Lunar and Planetary Science Conference, 34: 1320

[19]

Lehmkuhl F, Nottebaum V, Hülle D (2018). Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia).Geomorphology, 312: 24–39

[20]

Liu T, Ye L, Wang X, Pan Z (2007). Chemical action is an important factor for rock weathering in arid areas. Simulation experiments of evaporation and leaching.Geol China, 34: 815–821

[21]

Liu X, Wang H, Zuo H, Yan M, Li K (2022). Fractal of the Gobi surface sediment components and its variability characteristics.Catena, 218: 106525

[22]

Lu H, Wang X, Wang X, Chang X, Zhang H, Xu Z, Zhang W, Wei H, Zhang X, Yi S, Zhang W, Feng H, Wang Y, Wang Y, Han Z (2019). Formation and evolution of Gobi Desert in central and eastern Asia.Earth Sci Rev, 194: 251–263

[23]

McFadden L D, Eppes M C, Gillespie A R, Hallet B (2005). Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating.Geol Soc Am Bull, 117(1): 161–173

[24]

Mu Y, Wang F, Zheng B, Guo W, Feng Y (2018). McGET: a rapid image-based method to determine the morphological characteristics of gravels on the Gobi Desert surface.Geomorphology, 304: 89–98

[25]

Nesbitt H W, Young G M (1989). Formation and diagenesis of weathering profiles.J Geol, 97(2): 129–147

[26]

Ollier C D (1969). Weathering.Edinburgh: Oliver & Boyd,

[27]

Owen L A, Windley B F, Cunningham W D, Badamgarav J, Dorjnamjaa D (1997). Quaternary alluvial fans in the Gobi of southern Mongolia: evidence for neotectonics and climate change.J Quaternary Sci, 12(3): 239–252

[28]

Pelletier J D, Cline M, DeLong S B (2007). Desert pavement dynamics: numerical modeling and field-based calibration.Earth Surf Process Landf, 32(13): 1913–1927

[29]

Shao M, Wang Q, Huang M (2006). Soil Physics. Beijing: Higher Education Press, 320

[30]

Springer M E (1958). Desert pavement and vesicular layer of some desert soils in the desert of the Lahontan Basin.Soil Science Society of America, 22: 63–66

[31]

Vassallo R, Ritz J F, Braucher R, Carretier S (2005). Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia): climatic and tectonic implications.Terra Nova, 17(3): 278–285

[32]

Viles H A, Goudie A S (2007). Rapid salt weathering in the coastal Namib desert: implications for landscape development.Geomorphology, 85(1−2): 49–62

[33]

Viles H A, Goudie A S (2013). Weathering in the central Namib Desert, Namibia: controls, processes and implications.J Arid Environ, 93: 20–29

[34]

Wang F, Li Z, Wang X, Li B, Chen F (2018). Variation and interplay of the Siberian High and westerlies in central-east Asia during the past 1200 kyr.Aeolian Res, 33: 62–81

[35]

Wang X, Cai D, Sun J, Lu H, Liu W, Qiang M, Cheng H, Che H, Hua T, Zhang C (2019). Contributions of modern Gobi Desert to the Badain Jaran Desert and the Chinese Loess Plateau.Sci Rep, 9(1): 985

[36]

Wang X, Cai D, Zhu B, Lou J, Li D, Zhang C, Chen S, Xu Y, Cai W, Su S, Che H (2020). Dust-sized fractions from dustfall and physical weathering in the Gobi Desert.Aeolian Res, 43: 100565

[37]

Wang X, Cheng H, Che H, Sun J, Lu H, Qiang M, Hua T, Zhu B, Li H, Ma W, Lang L, Jiao L, Li D (2017). Modern dust aerosol availability in northwestern China.Sci Rep, 7(1): 8741

[38]

Wang X, Dong Z, Yan P, Yang Z, Hu Z (2005). Surface sample collection and dust source analysis in northwestern China.Catena, 59(1): 35–53

[39]

Wang X, Dong Z, Zhang J, Liu L (2004). Modern dust storms in China: an overview.J Arid Environ, 58(4): 559–574

[40]

Wang X, Hua T, Zhang C, Lang L, Wang H (2012a). Aeolian salts in Gobi deserts of the western region of Inner Mongolia: gone with the dust aerosols.Atmos Res, 118: 1–9

[41]

Wang X, Lang L, Hua T, Wang H, Zhang C, Wang Z (2012b). Characteristics of the Gobi Desert and their significance for dust emissions in the Ala Shan Plateau (Central Asia): an experimental study.J Arid Environ, 81: 35–46

[42]

Wang X, Xia D, Wang T, Xue X, Li J (2008). Dust sources in arid and semiarid China and southern Mongolia: impacts of geomorphological setting and surface materials.Geomorphology, 97(3−4): 583–600

[43]

Wang X, Zhang C, Wang H, Qian G, Luo W, Lu J, Wang L (2011). The significance of Gobi Desert surfaces for dust emissions in China: an experimental study.Environ Earth Sci, 64(4): 1039–1050

[44]

Yan C, Wang J (2019). Dataset of Desert (Sandy Land) in China (1:100000). National Cryosphere Desert Data Center

[45]

Yu K, Lehmkuhl F, Schlütz F, Diekmann B, Mischke S, Grunert J, Murad W, Nottebaum V, Stauch G, Zeeden C (2019). Late Quaternary environments in the Gobi Desert of Mongolia: vegetation, hydrological, and palaeoclimate evolution.Palaeogeogr Palaeoclimatol Palaeoecol, 514: 77–91

[46]

Zhang X, Gong S, Zhao T, Arimoto R, Wang Y, Zhou Z (2003). Sources of Asian dust and role of climate change versus desertification in Asian dust emission.Geophys Res Lett, 30(24): 2272

[47]

Zhu B, Zhang J, Sun C (2022). Potential links of Gobi, dust, and desertification: a comprehensive understanding from aeolian landform evolution in a middle-latitude desert.Sediment Geol, 428: 106049

[48]

Zobeck T M (1991). Soil properties affecting wind erosion.J Soil Water Conserv, 46(2): 112–118

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (9663KB)

480

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/