Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual polarimetric parameters

Juxiu WU , Fan XIA , Jiawen PAN , Guanglu HAN , Weijia SUN , Chen GU

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 752 -762.

PDF (2957KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 752 -762. DOI: 10.1007/s11707-024-1113-2
RESEARCH ARTICLE

Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual polarimetric parameters

Author information +
History +
PDF (2957KB)

Abstract

The hail size discrimination algorithm (HSDA) and its capacity to identify hail in Shandong Province are analyzed to satisfy the localized requirement by China’s S-band dual-polarization radars. A modified HSDA is obtained by using optimized membership function thresholds based on the statistics of Shandong hail data. The results are verified by a supercell storm process. 1) The modified HSDA improves the identification of large hail and giant hail. The results are consistent with the analysis of the scattering and polarization parameter characteristics of different-size hails, the dynamic and microphysical characteristics for supercell, and the real situation. 2) The horizontal and vertical hail-size distribution characteristics are consistent with the analysis about the growth process of larger hails and the precipitation particles filtering mechanisms in supercells. Small hail first forms at the suspension echo, then is injected into the larger hail growth area above the bounded weak echo area driven by updrafts, colliding with the abundant supercooled water in the KDP column. Finally, large hail and giant hail fall near the direction of the updrafts to form a strong echo wall, and giant hail falls 6–12 km from the central updraft. 3) The maxima of the ZDR and KDP columns can be used to predict the hail-growth trend, which exceeds the −20°C isotherm for the heavy-hail growth stage at high-altitude in the supercell storm. When hail falls to the ground, the ZDR column shortens and the KDP column disappears, which provides the observation basis from polarimetric radars for the consumption of supercooled water by hail growth.

Graphical abstract

Keywords

polarimetric parameters / hail size discrimination / membership function / giant hail

Cite this article

Download citation ▾
Juxiu WU, Fan XIA, Jiawen PAN, Guanglu HAN, Weijia SUN, Chen GU. Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual polarimetric parameters. Front. Earth Sci., 2024, 18(4): 752-762 DOI:10.1007/s11707-024-1113-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Sakka H, Boumahmoud A A, Fradon B, Frasier S J, Tabary P (2013). A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars.J Appl Meteorol Climatol, 52(10): 2328–2344

[2]

Dennis A S, Musil D J (1973). Calculations of hailstone growth and trajectories in a simple cloud Model.J Atmos Sci, 30(2): 278–288

[3]

Diao X, Guo F (2021). Structure characteristics of dual polarization parameters of Zhucheng supercell storm on August 16, 2019.Acta Meteorol Sin, 79(2): 181–195

[4]

Diao X, Huang X, Ren Z, Yang C, Liu Z, Geng L, Zhu J (2007). Verification and parameter localization of CINRAD/SA radar hail detection algorithm.Meteorol Sci Techn, 35(5): 727–731

[5]

Diao X, Yang C, Zhang Q, Lu Q (2021). Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells.Plateau Meteorol, 40(3): 580–589

[6]

Dolan B, Rutledge S A (2009). A theory-based hydrometeor identification algorithm for x-band polarimetric radars.J Atmos Ocean Technol, 26(10): 2071–2088

[7]

Gong D, Wang H, Xu H, Wang W, Zhu J, Wang J (2021). Observational analysis of a rare and severe hailstorm cloud structure and large hailstones formation on 16 August 2019 in Zhucheng, Shandong province.Acta Meteorol Sin, 79(4): 674–688

[8]

Heinselman P L, Ryzhkov A V (2006). Validation of polarimetric hail detection.Weather Forecast, 21(5): 839–850

[9]

Kaltenboeck R, Ryzhkov A (2013). Comparison of polarimetric signatures of hail at S and C bands for different hail sizes.Atmos Res, 123: 323–336

[10]

Kumjian M R (2013). Principles and applications of dual-polarization weather radar. Part III: artifacts.J Operat Meteorol, 1(21): 265–274

[11]

Lemon L R (1998). The radar “Three-body scatter spike”: an operational large-hail signature.Weather Forecast, 13(2): 327–340

[12]

Li B (2011). Weather Radar and Its Application. Beijing: China Meteorological Press, 243–256

[13]

Lin W, Zhang S, Luo C, Jiang H, Xie Z, Li D, Chen B (2020). Observational analysis of different intensity sever convective clouds by S-band dual-polarization radar.Meteor Monthly, 46(1): 63–72

[14]

Nelson S P (1983). The influence of storm flow structure on hail growth.J Atmos Sci, 40(8): 1965–1983

[15]

Ortega K L, Krause J M, Ryzhkov A V (2016). Polarimetric radar characteristics of melting hail. Part III: validation of the algorithm for hail size discrimination.J Appl Meteorol Climatol, 55(4): 829–848

[16]

Pan J, Guo L, Wei M, Luo R, Gao L, Zheng X, Peng Y (2021). Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations.Acta Meteorol Sin, 79(1): 168–180

[17]

Pan J, Wei M, Guo L, Yan Y, Luo C, Wu L (2020). Dual polarization radar characteristic analysis of the evolution of heavy hail supercell in Southern Fujian.Meteor Month, 46(12): 1608–1620

[18]

Park H S, Ryzhkov A V, Zrnić D S, Kim K E (2009). The hydrometeor classification algorithm for the polarimetric wsr-88d: description and application to an MCS.Weather Forecast, 24(3): 730–748

[19]

Ryzhkov A V, Kumjian M R, Ganson S M, Khain A P (2013a). Polarimetric radar characteristics of melting hail. Part I: theoretical simulations using spectral microphysical modeling.J Appl Meteorol Climatol, 52(12): 2849–2870

[20]

Ryzhkov A V, Kumjian M R, Ganson S M, Zhang P (2013b). Polarimetric radar characteristics of melting hail. Part II: practical implications.J Appl Meteorol Climatol, 52(12): 2871–2886

[21]

Scharfenberg K A, Miller D J, Schuur T J, Schlatter P T, Giangrande S E, Melnikov V M, Burgess D W, Andra D L Jr, Foster M P, Krause J M (2005). The joint polarization experiment: polarimetric radar in forecasting and warning decision making.Weather Forecast, 20(5): 775–788

[22]

Snyder J C, Ryzhkov A V, Bluestein H B, Scott F B (2014). Polarimetric analysis of two giant-hail-producing supercells observed by X-band and S-band radars. In: 27th Conf on Severe Local Storms, Madison, Amer Meteor Soc, 166

[23]

Tang L, Zhang J, Langston C, Krause J, Howard K, Lakshmanan V (2014). A physically based precipitation-nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system.Weather Forecast, 29(5): 1106–1119

[24]

Wang H, Wu N, Wan Q, Zhan C (2018). Analysis of s-band polarimetric radar observations of a supercell storm in south China.Acta Meteorol Sin, 76(1): 92–103

[25]

Witt A, Burgess D W, Seimon A, Allen J T, Snyder J C, Bluestein H B (2018). Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail.Weather Forecast, 33(5): 1263–1282

[26]

Witt M, Eilts D, Stumpf G J, Johnson J T, Mitchell E D W, Thomas K W (1998). An enhanced hail detection algorithm for the WSR-88D.Weather Forecast, 13(2): 286–303

[27]

Wu C, Liu L, Wei M, Xi B, Yu M (2018). Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in south China.Adv Atmos Sci, 35(3): 296–316

[28]

Wu J, Pan J, Wei M, Gu Y (2022). Statistics of polarization characteristics of hail at different scales by S-band dual-polarization radar.J Trop Meteorol, 38(2): 161–170

[29]

Xia F, Zhang L, Zhang L (2021). Study of recognition algorithm of non-precipitation echo for Beijing X-band radar based on dual polarization parameter.Meteoro Month, 47(5): 561–572

[30]

Xu H, Duan Y (2001). The mechanism of hailstone’s formation and the hail-suppression hypothesis: “Beneficial Competition”.Chin J Atmos Sci, 25(2): 277–288

[31]

Yu X (2014). Melting layer height of hail.Meteoro Month, 40(6): 649–654

[32]

Zeng Z, Chen Y, Zhu K, Li S (2019). Characteristics of atmospheric stratification and melting effect of heavy hail events in Guangdong Province.Chin J Atmos Sci, 43(3): 598–617

[33]

Zrnić D, Ryzhkov A (1999). Polarimetry for weather surveillance radars.Bull Am Meteorol Soc, 80(3): 389–406

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2957KB)

686

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/