The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing

Mengxin BAI , Wupeng DU , Zhixin HAO , Liang ZHANG , Pei XING

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (3) : 637 -648.

PDF (4111KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (3) : 637 -648. DOI: 10.1007/s11707-024-1107-0
RESEARCH ARTICLE

The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing

Author information +
History +
PDF (4111KB)

Abstract

It is crucial to investigate the characteristics of fire danger in the areas around Beijing to increase the accuracy of fire danger monitoring, forecasting, and management. Using meteorological data from 17 national meteorological stations in the areas around Beijing from 1981−2021, this study calculated the fire weather index (FWI) and analyzed its spatiotemporal characteristics. It was found that the high and low fire danger periods were in April−May and July−August, with spatial patterns of “decrease in the northwest−increase in the southeast” and a significant increase throughout the areas around Beijing, respectively. Next, the contributions of different meteorological factors were quantified by the multiple regression method. We found that during the high fire danger period, the northern and southern parts were affected by precipitation and minimum relative humidity, respectively. However, most areas were influenced by wind speed during the low fire danger period. Finally, comparing with the FWI characteristics under different SSP scenarios, we found that the FWI decreased during high fire danger period and increased during low fire danger period under different SSP scenarios (i.e., SSP245, SSP585) for periods of 2021−2050, 2071−2100, 2021−2100, except for SSP245 in 2071−2100 with an increasing trend both in high and low fire danger periods. This study implies that there is a higher probability of FWI in the low fire danger period, threatening the ecological environment and human health. Therefore, it is necessary to enhance research on fire danger during the low fire danger period to improve the ability to predict summer fire danger.

Graphical abstract

Keywords

meteorological data-based fire danger / areas around Beijing / climate characteristics / SSP scenarios

Cite this article

Download citation ▾
Mengxin BAI, Wupeng DU, Zhixin HAO, Liang ZHANG, Pei XING. The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing. Front. Earth Sci., 2024, 18(3): 637-648 DOI:10.1007/s11707-024-1107-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adámek M, Bobek P, Hadincova V, Wild J, Kopecky M (2015). Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe.For Ecol Manage, 336: 81–90

[2]

Amiro B D, Logan K A, Wotton B M, Flannigan M D, Todd J B, Stocks B J, Martell D L (2004). Fire weather index system components for large fires in the Canadian boreal forest.Int J Wildland Fire, 13(4): 391–400

[3]

Baranovskiy N V, Vyatkina V A, Chernyshov A M (2023). Deterministic-probabilistic prediction of forest fires from lightning activity taking into account aerosol emissions.Atmosphere (Basel), 14(1): 29

[4]

Cai D J, Abram N J, Sharples J J, Perkins-Kirkpatrick S E (2022). Increasing intensity and frequency of cold fronts contributed to Australia’s 2019–2020 Black Summer fire disaster.Environ Res Lett, 17(9): 094044

[5]

Cheng L L, Zhang Y, Sun H Y (2020). Vegetation cover change and relative contributions of associated driving factors in the ecological conservation and development zone of Beijing, China.Pol J Environ Stud, 29(1): 53–65

[6]

de Groot W J, Landry R, Kurz W A, Anderson K R, Englefield P, Fraser R H, Hall R J, Banfield E, Raymond D A, Decker V, Lynham T J, Pritchard J M (2007). Estimating direct carbon emissions from Canadian wildland fires.Int J Wildland Fire, 16(5): 593–606

[7]

de Sousa J A P, do Nascimento Lope E R, Duarte M L, Ewbank H, Lourenço R W (2022). Forest fire risk indicator (FFRI) based on geoprocessing and multicriteria analysis.Nat Hazards, 114(2): 2311–2330

[8]

Ding Y H, Sun Y, Wang Z Y, Zhu Y X, Song Y F (2009). Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: possible causes.Int J Climatol, 29(13): 1926–1944

[9]

Ding Y H, Wang Z Y, Sun Y (2008). Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: observed evidences.Int J Climatol, 28(9): 1139–1161

[10]

Esperson-Rodriguez M, Tjoelker M G, Lenoir J, Baumgartner J B, Beaumont L J, Nipperess D A, Power S A, Richard B, Rymer P D, Gallagher R V (2022). Climate change increases global risk to urban forests.Nat Clim Change, 12(10): 950–955

[11]

Flannigan M D, Krawchuk M A, de Groot W J, Wotton B M, Gowman L M (2009). Implications of changing climate for global wildland fire.Int J Wildland Fire, 18(5): 483–507

[12]

Guidolotti G, Calfapietra C, Pallozzi E, De Simoni G, Esposito R, Mattioni M, Nicolini G, Matteucci G, Brugnoli E (2017). Promoting the potential of flux-measuring stations in urban parks: an innovative case study in Naples, Italy.Agric For Meteorol, 233: 153–162

[13]

Hardiman B S, Wang J A, Hutyra L R, Gately C K, Getson J M, Friedl M A (2017). Accounting for urban biogenic fluxes in regional carbon budgets.Sci Total Environ, 592: 366–372

[14]

Hurteau M D, North M (2010). Carbon recovery rates following different wildfire risk mitigation treatments.For Ecol Manage, 260(5): 930–937

[15]

Ibsen P C, Borowy D, Dell T, Greydanus H, Gupta N, Hondula D M, Meixner T, Santelmann M V, Shiflett S A, Sukop M C, Swan C M, Talal M L, Valencia M, Wright M K, Jenerette G D (2021). Greater aridity increases the magnitude of urban nighttime vegetation-derived air cooling.Environ Res Lett, 16(3): 034011

[16]

Jain P, Castellanos-Acuna D, Coogan S C P, Abatzoglou J T, Flannigan M D (2022). Observed increases in extreme fire weather driven by atmospheric humidity and temperature.Nat Clim Chang, 12(1): 63–70

[17]

Jia P P, Zhuang D F, Wang Y (2017). Impacts of temperature and precipitation on the spatiotemporal distribution of water resources in Chinese mega cities: the case of Beijing.J Water Clim Chang, 8(4): 593–612

[18]

Jolly W M, Cochrane M A, Freeborn P H, Holden Z A, Brown T J, Williamson G J, Bowman D M J S (2015). Climate-induced variations in global wildfire danger from 1979 to 2013.Nat Commun, 6(1): 7537

[19]

Justino F, de Melo A S, Setzer A, Sismanoglu R, Sediyama G C, Ribeiro G A, Machado J P, Sterl A (2011). Greenhouse gas induced changes in the fire risk in Brazil in ECHAM5/MPI-OM coupled climate model.Clim Change, 106(2): 285–302

[20]

Kelly L T, Giljohann K M, Duane A, Aquilue N, Archibald S, Batllori E, Bennett A F, Buckland S T, Canelles Q, Clarke M F, Fortin M J, Hermoso V, Herrando S, Keane R E, Lake F K, McCarthy M A, Morán-Ordóñez A, Parr C L, Pausas J G, Penman T D, Regos A, Rumpff L, Santos J L, Smith A L, Syphard A D, Tingley M W, Brotons L (2020). Fire and biodiversity in the Anthropocene.Science, 370(6519): eabb0355

[21]

Kloster S, Mahowald N M, Randerson J T, Lawrence P J (2012). The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN.Biogeosciences, 9(1): 509–525

[22]

McDowell N G, Allen C D (2015). Darcy’s law predicts widespread forest mortality under climate warming.Nat Clim Chang, 5(7): 669–672

[23]

Nolan R H, Boer M M, Collins L, Resco de Dios V R, Clarke H, Jenkins M, Kenny B, Bradstock R A (2020). Causes and consequences of eastern Australia’s 2019–20 season of mega-fires.Glob Change Biol, 26(3): 1039–1041

[24]

O’Neill B C, Tebaldi C, van Vuuren D P, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J F, Lowe J, Meehl G A, Moss R, Riahi K, Sanderson B M (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Geosci Model Dev, 9(9): 3461–3482

[25]

Pataki D E, Alberti M, Cadenasso M L, Felson A J, McDonnell M J, Pincetl S, Pouyat R V, Setala H, Whitlow T H (2021). The benefits and limits of urban tree planting for environmental and human health.Front Ecol Evol, 9: 603757

[26]

Riahi K, van Vuuren D P, Kriegler E, Edmonds J, O’Neill B C, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma J C, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva L A, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman J C, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.Glob Environ Change, 42: 153–168

[27]

Richards D R, Belcher R N, Carrasco L R, Edwards P J, Fatichi S, Hamel P, Masoudi M, McDonnell M J, Peleg N, Stanley M C (2022). Global variation in contributions to human well-being from urban vegetation ecosystem services.One Earth, 5(5): 522–533

[28]

Slezakova K, Morais S, Pereira M D (2013). Forest fires in Northern region of Portugal: impact on PM levels.Atmos Res, 127: 148–153

[29]

Spracklen D V, Mickley L J, Logan J A, Hudman R C, Yevich R, Flannigan M D, Westerling A L (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States.J Geophys Res, 114: D20301

[30]

Squire D T, Richardson D, Risbey J S, Black A S, Kitsios V, Matear R J, Monselesan D, Moore T S, Tozer C R (2021). Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires.NPJ Clim Atmos Sci, 4(1): 64

[31]

Taylor K E, Stouffer R J, Meehl G A (2012). An overview of CMIP5 and the experiment design.Bull Am Meteorol Soc, 93(4): 485–498

[32]

Tian X M, Tang C L, Wu X, Yang J, Zhao F M, Liu D (2023). The global spatial-temporal distribution and EOF analysis of AOD based on MODIS data during 2003–2021.Atmos Environ, 302: 119722

[33]

Tian X R, McRae D J, Jin J Z, Shu L F, Zhao F J, Wang M Y (2011). Wildfires and the Canadian forest fire weather index system for the Daxing’anling region of China.Int J Wildland Fire, 20(8): 963–973

[34]

Tian X R, Shu L F, Wang M Y (2006). Study on assessment of Beijing forest fire danger.Fire Safety Sci, 15(3): 150–158

[35]

Wagner C E V (1987). Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 35: 1–48

[36]

Ward M, Tulloch A I T, Radford J Q, Williams B A, Reside A E, Macdonald S L, Mayfield H J, Maron M, Possingham H P, Vine S J, O’Connor J L, Massingham E J, Greenville A C, Woinarski J C Z, Garnett S T, Lintermans M, Scheele B C, Carwardine J, Nimmo D G, Lindenmayer D B, Kooyman R M, Simmonds J S, Sonter L J, Watson J E M (2020). Impact of 2019–2020 mega-fires on Australian fauna habitat.Nat Ecol Evol, 4(10): 1321–1326

[37]

Weeks J, Miller J E D, Steel Z L, Batzer E E, Safford H D (2023). High-severity fire drives persistent floristic homogenization in human-altered forests.Ecosphere, 14(2): e4409

[38]

Wei S Y, Chen Q J, Wu W B, Ma J (2021). Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China.Environ Res Lett, 16(6): 064088

[39]

Xie G D, Li W H, Xiao Y, Zhang B A, Lu C X, An K, Wang J X, Xu K, Wang J Z (2010). Forest ecosystem services and their values in Beijing.Chin Geogr Sci, 20(1): 51–58

[40]

Ying L X, Shen Z H, Guan P G, Cao J, Luo C F, Peng X Z, Cheng H J (2022). Impacts of the Western Pacific and Indian Ocean warm pools on wildfires in Yunnan, Southwest China: spatial patterns with interannual and intraannual variations.Geophys Res Lett, 49(11): e2022GL098797

[41]

Zhang Y F, Jia D M, Zhang H Y, Tan J, Song S Y, Sun R F (2011). Spatial structure of valley economic development in the mountainous areas in Beijing.J Geogr Sci, 21(2): 331–345

[42]

Zhu Z, Zhu X (2021). Study on spatiotemporal characteristic and mechanism of forest loss in urban agglomeration in the middle reaches of the Yangtze River.Forests, 12(9): 1242

[43]

Zou Y F, Rasch P J, Wang H L, Xie Z W, Zhang R D (2021). Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic.Nat Commun, 12(1): 6048

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4111KB)

888

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/