Response of forest belt on the south slope of Tianshan Mountains in China to global warming during 1990−2020

Liyuan ZHENG , Yong ZHANG , Chao LU , Wensheng ZHANG , Bo TAN , Lai JIANG , Yanzhen ZHANG , Chengbang AN

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 831 -848.

PDF (10231KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (4) : 831 -848. DOI: 10.1007/s11707-024-1105-2
RESEARCH ARTICLE

Response of forest belt on the south slope of Tianshan Mountains in China to global warming during 1990−2020

Author information +
History +
PDF (10231KB)

Abstract

Mountain vegetation is highly sensitive to changes in climate. Currently, there is no consensus regarding the direction and magnitude of the spatial migration of mountain vegetation in response to climate change. Past studies have reported that climate change promotes upward or downward movement of plant species along an altitude gradient. Based on meteorological data and remote sensing images, this study analyzed the spatial distribution and dynamic trend of mountain altitudinal vegetation belts on the southern slope of the Tianshan Mountains over the past 30 years and discussed the climatic driving factors of these changes. The results showed that the forest belt in this area is unusual because it is embedded in the grassland belt in a patch-like manner and shows discontinuous changes or replacements along the vertical gradient. With the coexistence of warm humidification and warm drying on the southern slope of the Tianshan Mountains, the response of the upper and lower altitudes of the forest belt to climate change was similar, showing a trend of migration to higher-altitude areas. The main climatic factors affecting the migration of the upper and lower altitudes varied spatially. In general, the upper limit of the forest belt had a higher association with precipitation during the vegetative growth season, while the contribution of temperature-related factors to the lower limit of the forest belt was greater.

Graphical abstract

Keywords

Tianshan Mountains / forest belt / spatial migration / altitude limitation / global warming

Cite this article

Download citation ▾
Liyuan ZHENG, Yong ZHANG, Chao LU, Wensheng ZHANG, Bo TAN, Lai JIANG, Yanzhen ZHANG, Chengbang AN. Response of forest belt on the south slope of Tianshan Mountains in China to global warming during 1990−2020. Front. Earth Sci., 2024, 18(4): 831-848 DOI:10.1007/s11707-024-1105-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antão L H, Weigel B, Strona G, Hällfors M, Kaarlejärvi E, Dallas T, Opedal Ø H, Heliölä J, Henttonen H, Huitu O, Korpimäki E, Kuussaari M, Lehikoinen A, Leinonen R, Lindén A, Merilä P, Pietiäinen H, Pöyry J, Salemaa M, Tonteri T, Vuorio K, Ovaskainen O, Saastamoinen M, Vanhatalo J, Roslin T, Laine A L (2022). Climate change reshuffles northern species within their niches.Nat Clim Chang, 12(6): 587–592

[2]

Breiman L (1996). Bagging predictors.Mach Learn, 24(2): 123–140

[3]

Breiman L (2001a). Random forests.Mach Learn, 45(1): 5–32

[4]

Breiman L (2001b). Statistical modeling: the two cultures.Qual Eng, 48: 81–82

[5]

Buka L, Maruziva R, Nenhowe P (2015). A comparison of Google Earth extracted points with GPS surveyed points.Ethiop J Environ Stud Manag, 8(5): 484–493

[6]

Chen I C, Hill J K, Ohlemüller R, Roy D B, Thomas C D (2011). Rapid range shifts of species associated with high levels of climate warming.Science, 333(6045): 1024–1026

[7]

Crimmins S M, Dobrowski S Z, Greenberg J A, Abatzoglou J T, Mynsberge A R (2011). Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations.Science, 331(6015): 324–327

[8]

Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I, Macek M, Altman J, Chlumska Z, Rehakova K, Capkova K, Borovec J, Mudrak O, Wild J, Schweingruber F (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya.Sci Rep, 6(1): 24881

[9]

Elsen P R, Monahan W B, Merenlender A M (2020). Topography and human pressure in mountain ranges alter expected species responses to climate change.Nat Commun, 11(1): 1974

[10]

Feeley K J, Bravo-Avila C, Fadrique B, Perez T M, Zuleta D (2020). Climate-driven changes in the composition of New World plant communities.Nat Clim Chang, 10(10): 965–970

[11]

Ge J, Berg B, Xie Z (2019). Climatic seasonality is linked to the occurrence of the mixed evergreen and deciduous broad-leaved forests in China.Ecosphere, 10(9): e02862

[12]

Giménez-Benavides L, Albert M J, Iriondo J M, Escudero A (2011). Demographic processes of upward range contraction in a long-lived Mediterranean high mountain plant.Ecography, 34(1): 85–93

[13]

Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso J L, Coldea G, Dick J, Erschbamer B, Fernández Calzado M´ R, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012). Continent-wide response of mountain vegetation to climate change.Nat Clim Chang, 2(2): 111–115

[14]

Goudarzi M A, L andry R Jr. (2017). Assessing horizontal positional accuracy of Google Earth imagery in the city of Montreal, Canada.Geodesy Cartogr, 43(2): 56–65

[15]

Greenberg J A, Santos M J, Dobrowski S Z, Vanderbilt V C, Ustin S L (2015). Quantifying environmental limiting factors on tree cover using geospatial data.PLoS One, 10(2): e0114648

[16]

Grytnes J-A, Kapfer J, Jurasinski G, Birks H H, Henriksen H, Klanderud K, Odland A, Ohlson M, Wipf S, Birks H J B (2014). Identifying the driving factors behind observed elevational range shifts on European mountains.Global Eco Biogeograph, 23: 876–884

[17]

Guo F, Lenoir J, Bonebrake T C (2018). Land-use change interacts with climate to determine elevational species redistribution.Nat Commun, 9(1): 1315

[18]

Hagedorn F, Gavazov K, Alexander J M (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change.Science, 365(6458): 1119–1123

[19]

Huang J, Jing C, Fu J, Huang Z (2019). Uncertainty analysis of rainfall spatial interpolation in urban small area. In: Gao H, Yin Y, Yang X, Miao H, eds. Testbeds and Research Infrastructures for the Development of Networks and Communities. Cham: Springer International Publishing, 79–95

[20]

Jiao L, Jiang Y, Zhang W, Wang M, Wang S, Liu X (2019). Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China.For Ecol Manage, 433: 667–677

[21]

Kelly A E, Goulden M L (2008). Rapid shifts in plant distribution with recent climate change.Proc Natl Acad Sci, 105: 11823–11826

[22]

Lamprecht A, Semenchuk P R, Steinbauer K, Winkler M, Pauli H (2018). Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps.New Phytol, 220(2): 447–459

[23]

Brandt L A, Benscoter A M, Harvey R, Speroterra C, Bucklin D, Romañach S S, Watling J I, Mazzotti F J (2017). Comparison of climate envelope models developed using expert-selected variables versus statistical selection.Ecol Modell, 345: 10–20

[24]

Lenoir J, Gégout J C, Marquet P A, de Ruffray P, Brisse H (2008). A significant upward shift in plant species optimum elevation during the 20th century.Science, 320(5884): 1768–1771

[25]

Lesiv M, See L, Laso Bayas J C, Sturn T, Schepaschenko D, Karner M, Moorthy I, McCallum I, Fritz S (2018). Characterizing the spatial and temporal availability of very high resolution satellite imagery in Google Earth and Microsoft Bing Maps as a source of reference data.Land (Basel), 7(4): 118

[26]

Li L, Zhang Y, Wu J, Li S, Zhang B, Zu J, Zhang H, Ding M, Paudel B (2019). Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau.Sci Total Environ, 678: 21–29

[27]

Li X (2013). Using random forest for classification and regression.Chinese J App Entomo, 50(4): 1190–1197

[28]

Li Y, Chen Y, Li Z (2020). Climate and topographic controls on snow phenology dynamics in the Tienshan Mountains, Central Asia.Atmos Res, 236: 104813

[29]

Li Y, Chen Y, Sun F, Li Z (2021). Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia.Ecol Indic, 129: 107912

[30]

Liu V, Wang Y, Wang Y, Guo J, Yu P, Wang L, Yu S, Liu F (2021). Separating meteorological condition and soil moisture controls on the variation in stand evapotranspiration of a larch plantation during three hydrological years.Glob Ecol Conserv, 27: e01548

[31]

Ma M, Wang Q, Liu R, Zhao Y, Zhang D (2023). Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and accumulation effects.Sci Total Environ, 860: 160527

[32]

Menéndez R, González-Megías A, Jay-Robert P, Marquéz-Ferrando R (2014). Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges.Glob Ecol Biogeogr, 23(6): 646–657

[33]

Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas J D, Segnitz R M, Svenning J C (2015). Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt.Proc Natl Acad Sci USA, 112(41): 12741–12745

[34]

Mohd Z, Zhou W, Wu C, Lin Y, Azeez P A, Song Q, Liu Y, Zhang Y, Lu Z, Sha L (2022). Soil heterotrophic respiration in response to rising temperature and moisture along an altitudinal gradient in a subtropical forest ecosystem, southwest China.Sci Total Environ, 816: 151643

[35]

Ni J (2004). Forest productivity of the Altay and Tianshan Mountains in the dryland, northwestern China.For Ecol Manage, 202(1–3): 13–22

[36]

Nwilo P C, Okolie C J, Onyegbula J C, Arungwa I D, Ayoade O Q, Daramola O E, Orji M J, Maduako I D, Uyo I I (2022). Positional accuracy assessment of historical Google Earth imagery in Lagos State, Nigeria.Applied Geomatics, 14(3): 545–568

[37]

Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems.Nature, 421(6918): 37–42

[38]

Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso J L B, Coldea G, Dick J, Erschbamer B, Calzado R F, Ghosn D, Holten J I, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa J M, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset A O, Theurillat J P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012). Recent plant diversity changes on Europe’s mountain summits.Science, 336(6079): 353–355

[39]

Peng S (2019) 1-km monthly mean temperature dataset for china (1901–2021). In: National Tibetan Plateau Data C, ed. National Tibetan Plateau Data Center

[40]

Peng S (2020) 1-km monthly precipitation dataset for China (1901–2021). In: National Tibetan Plateau Data C, ed. National Tibetan Plateau Data Center

[41]

Peng S (2022) 1 km monthly potential evapotranspiration dataset in China (1990–2021). In: National Tibetan Plateau Data C, ed. National Tibetan Plateau Data Center

[42]

Rana S K, Rana H K, Stöcklin J, Ranjitkar S, Sun H, Song B (2022). Global warming pushes the distribution range of the two alpine ‘glasshouse’ Rheum species north- and upwards in the Eastern Himalayas and the Hengduan Mountains.Front Plant Sci, 13: 925296

[43]

Sánchez-González A, López-Mata L (2005). Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico.Divers Distrib, 11(6): 567–575

[44]

Shrestha N, Su X, Xu X, Wang Z (2018). The drivers of high Rhododendron diversity in south-west China: Does seasonality matter.J Biogeogr, 45(2): 438–447

[45]

Steinbauer M J, Grytnes J A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman A D, Breiner F T, Burg S, Czortek P, Dawes M A, Delimat A, Dullinger S, Erschbamer B, Felde V A, Fernández-Arberas O, Fossheim K F, Gómez-García D, Georges D, Grindrud E T, Haider S, Haugum S V, Henriksen H, Herreros M J, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella U M, Normand S, Odland A, Olsen S L, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning J C, Teppa G, Theurillat J P, Vittoz P, Woodin S J, Zimmermann N E, Wipf S (2018). Accelerated increase in plant species richness on mountain summits is linked to warming.Nature, 556(7700): 231–234

[46]

Tian S, Zhang X, Tian J, Sun Q (2016). Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China.Remote Sens (Basel), 8(11): 954

[47]

Tobler W R (1970). A computer movie simulating urban growth in the detroit region.Econ Geogr, 46: 234–240

[48]

Trisos C H, Merow C, Pigot A L (2020). The projected timing of abrupt ecological disruption from climate change.Nature, 580(7804): 496–501

[49]

Urban M C (2015). Accelerating extinction risk from climate change.Science, 348(6234): 571–573

[50]

Villén-Peréz S, Heikkinen J, Salemaa M, Mäkipää R (2020). Global warming will affect the maximum potential abundance of boreal plant species.Ecography, 43(6): 801–811

[51]

Wang Y, Gao L, Zhao X (2013). Tree-ring width chronology of Populus tremula and its relationship with the weather in Changbai Mountain of northeastern China.J Northeast Fores U, 41(1): 10–13

[52]

Yang J, Huang X (2021). The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019.Earth Syst Sci Data, 13(8): 3907–3925

[53]

Yan X J, Chen X H, Ma C C, Cai Y, Cui Z, Chen X, Wu L, Zhang F (2021). What are the key factors affecting maize yield response to and agronomic efficiency of phosphorus fertilizer in China.Field Crops Res, 270: 108221

[54]

Yu J, Wang C, Wan J, Han S, Wang Q, Nie S (2014). A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change.For Ecol Manage, 327: 48–54

[55]

Yu Y, Li M, Fu Y (2018). Forest type identification by random forest classification combined with SPOT and multitemporal SAR data.J For Res, 29(5): 1407–1414

[56]

Yue X, Liu G, Chen J, Zhou C (2020). Synergistic regulation of the interdecadal variability in summer precipitation over the Tianshan mountains by sea surface temperature anomalies in the high-latitude Northwest Atlantic Ocean and the Mediterranean Sea.Atmos Res, 233: 104717

[57]

Zhang Y, Liu L y, Liu Y, Zhang M, An C (2021). Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015.Sci Rep, 11(1): 4870

[58]

Zhang Y, An C B, Liu L Y, Zhang Y Z, Lu C, Zhang W S (2022). High-elevation landforms are experiencing more remarkable wetting trends in arid Central Asia.Adv Clim Chang Res, 13(4): 489–495

[59]

Zhang M G, Slik J, Ma K P (2016). Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China.Sci Rep, 6(1): 22400

[60]

Zhang J, Zhang N, Liu Y X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J, Wang W, Zhang P, Jin T, Chu C, Bai Y (2018). Root microbiota shift in rice correlates with resident time in the field and developmental stage.Sci Chn Life Sci, 61(6): 613–621

[61]

Zhao J, Huang S, Huang Q, Wang H, Leng G, Fang W (2020). Time-lagged response of vegetation dynamics to climatic and teleconnection factors.Catena, 189: 104474

[62]

Zheng L, Gaire N P, Shi P (2021). High-altitude tree growth responses to climate change across the Hindu Kush Himalaya.J Plant Ecol, 14(5): 829–842

[63]

Zischg A P, Frehner M, Gubelmann P, Augustin S, Brang P, Huber B (2021). Participatory modelling of upward shifts of altitudinal vegetation belts for assessing site type transformation in Swiss forests due to climate change.Appl Veg Sci, 24(4): e12621

[64]

Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, Peng S, Meng J, Zhou J (2021). Upward shift and elevational range contractions of subtropical mountain plants in response to climate change.Sci Total Environ, 783: 146896

[65]

Zurqani H A, Post C J, Mikhailova E A, Cope M P, Allen J S, Lytle B A (2020). Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine.Sci Rep, 10(1): 14096

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (10231KB)

705

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/