Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence
Yanrong ZHANG, Nannan WANG, Lina LIU, Mingda WANG, Xiaoshan YU, Xianyong CAO
Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence
Investigating the dynamics of vegetation is an essential basis to know how to protect ecological environments and to help predict any changes in trend. Because of its fragile alpine ecosystem, the Tibetan Plateau is a particularly suitable area for studying vegetation changes and their driving factors. In this study, we present a high-resolution pollen record covering the last two centuries extracted from Gongzhu Co on the western Tibetan Plateau. Alpine steppe is the predominant vegetation type in the surrounding area throughout the past 250 years with stable vegetation composition and abundance, as revealed by pollen spectra dominated by Artemisia, Ranunculaceae, Cyperaceae, and Poaceae. Detrended canonical correspondence analysis (DCCA) of the pollen data reveals low turnover in compositional species (0.41 SD), suggesting that the vegetation in the Gongzhu catchment had no significant temporal change, despite climate change and population increases in recent decades. We additionally ran DCCA on ten other pollen records from the Tibetan Plateau with high temporal resolution (1–20 years) covering recent centuries, and the results also show that compositional species turnover (0.15–0.81 SD) is relatively low, suggesting that the vegetation stability may have prevailed across the Tibetan Plateau during recent centuries. More high-resolution pollen records and high taxonomic-resolution palaeo-vegetation records (such as sedaDNA), however, are needed to confirm the vegetation stability on the Tibetan Plateau.
pollen / compositional species turnover / vegetation change / ecological stability
[1] |
Appleby P G, Shotyk W, Fankhauser A (1997). Lead-210 age dating of three peat cores in the Jura mountains, Switzerland.Water Air Soil Pollut, 100: 223–231
CrossRef
Google scholar
|
[2] |
Aquino-López M A, Blaauw M, Christen J A, Sanderson N K (2018). Bayesian analysis of 210Pb dating.J Agric Biol Environ Stat, 23(3): 317–333
CrossRef
Google scholar
|
[3] |
Cao X, Tian F, Herzschuh U, Ni J, Xu Q, Li W, Zhang Y, Luo M, Chen F (2022). Human activities have reduced plant diversity in eastern China over the last two millennia.Glob Chang Biol, 28: 4962–4976
CrossRef
Google scholar
|
[4] |
Cao X, Tian F, Li F, Gaillard M J, Rudaya N, Xu Q, Herzschuh U (2019). Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP.Clim Past, 15(4): 1503–1536
CrossRef
Google scholar
|
[5] |
Cao X, Tian F, Li K, Ni J (2020). Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center 10.11888/Paleoenv.tpdc.270735
|
[6] |
Cao X, Wang N, Cao Y, Liu L, Zhang Y, Hou X, Zhao W, Li Y, Tian F (2023). Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau.Quat Sci Rev, 301(1): 107916
CrossRef
Google scholar
|
[7] |
Chao A, Gotelli N J, Hsieh T C, Sander E L, Ma K H, Colwell R K, Ellison A M (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.Ecol Monogr, 84: 45e67
CrossRef
Google scholar
|
[8] |
Chen F, Zhang J, Liu J, Cao X, Hou J, Zhu L, Xu X, Liu X, Wang M, Wu D, Huang X, Zeng T, Zhang S, Huang W, Zhang X, Yang K (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review.Quat Sci Rev, 243: 106444
CrossRef
Google scholar
|
[9] |
Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Glob Change Biol, 19(10): 2940–2955
CrossRef
Google scholar
|
[10] |
Chen J, Chi Y, Zhou W, Wang Y, Zhuang J, Zhao N, Ding J, Song J, Zhou L (2021). Quantifying the dimensionalities and drivers of ecosystem stability at global scale.J Geophys Res Biogeosci, 126(4): e2020JG006041
CrossRef
Google scholar
|
[11] |
Cremers A, Elsen A, De Preter P, Maes A (1988). Quantitative analysis of radiocaesium retention in soils.Nature, 335(6187): 247–249
CrossRef
Google scholar
|
[12] |
Cui A, Lu H, Liu X, Shen C, Xu D, Xu B, Wu , N (2021). Tibetan Plateau precipitation modulated by the periodically coupled westerlies and Asian Monsoon.Geophys Res Lett, 48: e2020GL091543
CrossRef
Google scholar
|
[13] |
Fægri K, Iversen J (1989). Textbook of Pollen Analysis, 4th edition. London: John Wiley and Sons
|
[14] |
Felde V A, Flantua S G A, Jenks C R, Benito B M, de Beaulieu J L, Kuneš P, Magri D, Nalepka D, Risebrobakken B, ter Braak C J F, Allen J R M, Granoszewski W, Helmens K F, Huntley B, Kondratien , O. , Kalniņa L, Kupryjanowicz M, Malkiewicz M, Milner A M, Nita M, Noryśkiewicz B, Pidek I A, Reille M, Salonen J S, Šeirienė V, Winter H, Tzedakis P C, Birks H J B (2020). Compositional turnover and variation in Eemian pollen sequences in Europe.Veg Hist Archaeobot, 29: 101e109
CrossRef
Google scholar
|
[15] |
Gao S P, Wang J B, Xu B Q, Zhang X L (2021). Application and problems of 210Pb and 137Cs dating techniques in lake sediments.J Lake Sci, 33(2): 622–631 (in Chinese)
CrossRef
Google scholar
|
[16] |
Grimm E C (2004). TGview Version 2.0.2. Springfield: Illinois State Museum
|
[17] |
Han Y, Liu H, Zhou L, Hao Q, Cheng Y (2020). Postglacial evolution of forest and grassland in southeastern Gobi (northern China).Quat Sci Rev, 248: 106611
CrossRef
Google scholar
|
[18] |
Herzschuh U (2007). Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau.J Biogeogr, 34(7): 1265–1273
CrossRef
Google scholar
|
[19] |
Herzschuh U, Winter K, Wünnemann B, Li S (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.Quat Int, 154-155: 113–121
CrossRef
Google scholar
|
[20] |
Hill M O (1973). Diversity and evenness: a unifying notation and its consequences.Ecology, 54(2): 427–432
CrossRef
Google scholar
|
[21] |
Hill M O, Gauch H G Jr (1980). Detrended correspondence analysis: an improved ordination technique.Vegetatio, 42(1–3): 47–58
CrossRef
Google scholar
|
[22] |
Hobbs W O, Telford R J, Birks H J B, Saros J E, Hazewinkel R R, Perren B B, Saulnier-Talbot E, Wolfe A P (2010). Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages.PLoS One, 5(4): e10026
CrossRef
Google scholar
|
[23] |
Holling C S (1973). Resilience and stability of ecological systems.Annu Rev Ecol Syst, 4(1): 1–23
CrossRef
Google scholar
|
[24] |
Hsieh T C, Ma K H, Chao A (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers).Methods Ecol Evol, 7: 1451e1456
CrossRef
Google scholar
|
[25] |
Jackson S T, Blois J L (2015). Community ecology in a changing environment: perspectives from the Quaternary.Proc Natl Acad Sci USA, 112(16): 4915–4921
CrossRef
Google scholar
|
[26] |
Jin Y, Wang H, Wei L, Hou Y, Hu J, Wu K, Xia H, Xia J, Zhou B, Li K, Ni J (2022). A plot-based dataset of plant community on the Qingzang Plateau.Acta Phytoecol Sin, 46(7): 846–854
CrossRef
Google scholar
|
[27] |
Jost L (2007). Partitioning diversity into independent alpha and beta components.Ecology, 88(10): 2427–2439
CrossRef
Google scholar
|
[28] |
Li K, Liu X, Wang Y, Herzschuh U, Ni J, Liao M, Xiao X (2017). Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole.Quat Sci Rev, 177: 235–245
CrossRef
Google scholar
|
[29] |
Li M, Wu J S, Feng Y F, Niu B, He Y T, Zhang X Z (2021). Climate variability rather than livestock grazing dominates changes in Alpine Grassland productivity across Tibet.Front Ecol Evol, 9: 631024
CrossRef
Google scholar
|
[30] |
Liu L, Hou X, Yu X, Wang N, Zhang Y, Cao X (2022). Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau.Holocene, 32(6): 543–553
CrossRef
Google scholar
|
[31] |
Lü X, Paudayal K N, Uhl D, Zhu L, Yao T, Mosbrugger V (2020). Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region.J Geophys Res Atmos, 125: e2020JD033405
CrossRef
Google scholar
|
[32] |
Luly J G (1997). Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia.Rev Palaeobot Palynol, 97(3–4): 301–318
CrossRef
Google scholar
|
[33] |
Ma Q, Zhu L, Lü X, Wang J, Ju J, Kasper T, Daut G, Haberzettl T (2019). Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau.Global Planet Change, 174: 16–25
CrossRef
Google scholar
|
[34] |
Ma Q, Zhu L, Lu X, Wang Y, Guo Y, Wang J, Ju J, Peng P, Tang L (2017). Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau.Boreas, 46(2): 242–253
CrossRef
Google scholar
|
[35] |
Maher L J Jr (1981). Statistics for microfossil concentration measurements employing samples spiked with marker grains.Rev Palaeobot Palynol, 32(2–3): 153–191
CrossRef
Google scholar
|
[36] |
Miehe G, Bach K, Miehe S, Kluge J, Yang Y P, Duo L, Co S, Wesche K (2011a). Alpine steppe plant communities of the Tibetan highlands.Appl Veg Sci, 14(4): 547–560
CrossRef
Google scholar
|
[37] |
Miehe G, Miehe S, Bach K, Kluge J, Wesche K, Yang Y, Liu J (2011b). Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tiber?.Quat Res, 76(2): 243–252
CrossRef
Google scholar
|
[38] |
Miehe G, Schleuss P M, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T, Graf H F, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai Z, Lehnert L, Leuschner C, Li X, Liu J, Liu S, Ma Y, Miehe S, Mosbrugger V, Noltie H J, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghöfer S, Xu X, Yang Y, Zhang S, Opgenoorth L, Wesche K (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands - Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet.Sci Total Environ, 648: 754–771
CrossRef
Google scholar
|
[39] |
Oksanen J, Simpson G, Blanchet F G, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022) vegan: Community Ecology Package, version 2.6–4
|
[40] |
Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer E A, Ganesanandamoorthy P, Garnier A, Griffiths J I, Greene S, Horgan K, Massie T M, Mächler E, Palamara G M, Seymour M, Petchey O L (2018). Biodiversity increases and decreases ecosystem stability.Nature, 563(7729): 109–112
CrossRef
Google scholar
|
[41] |
Pennington W (1979). The origin of pollen sediments: an enclosed lake compared with one receiving inflow streams.New Phytol, 83: 76–86
|
[42] |
Piao S, Zhang X, Wang T, Liang E, Wang S, Zhu J, Niu B (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change.Chinese Sci Bull, 64(27): 2842–2855
CrossRef
Google scholar
|
[43] |
Prentice I C (1980). Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods.Rev Palaeobot Palynol, 31: 71–104
CrossRef
Google scholar
|
[44] |
Qiu J (2008). China: the third pole.Nature, 454: 393e396
CrossRef
Google scholar
|
[45] |
R Core Team (2022). R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna: Austria
|
[46] |
Radchuk V, Laender F, Cabral J S, Boulangeat I, Crawford M, Bohn F, Raedt J, Scherer C, Svenning J C, Thonicke K, Schurr F M, Grimm V, Kramer-Schadt S (2019). The dimensionality of stability depends on disturbance type.Ecol Lett, 22(4): 674–684
CrossRef
Google scholar
|
[47] |
Rudaya N, Krivonogov S, Słowiński M, Cao X, Zhilich S (2020). Postglacial history of the Steppe Altai: climate, fire and plant diversity.Quat Sci Rev, 249: 106616
CrossRef
Google scholar
|
[48] |
Sano M, Ramesh R, Sheshshayee M S, Sukumar R (2012). Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology.Holocene, 22(7): 809–817
CrossRef
Google scholar
|
[49] |
Shen M G, Piao S L, Dorji T, Liu Q, Cong N, Chen X C, An S, Wang S P, Wang T, Zhang G X (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges.Natl Sci Rev, 2(4): 454–467
CrossRef
Google scholar
|
[50] |
Smol J P, Wolfe A P, Birks H J B, Douglas M S, Jones V J, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks S J, Fallu M A, Hughes M, Keatley B E, Laing T E, Michelutti N, Nazarova L, Nyman M, Paterson A M, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005). Climate-driven regime shifts in the biological communities of arctic lakes.Proc Natl Acad Sci USA, 102(12): 4397–4402
CrossRef
Google scholar
|
[51] |
Sugita S (1993). A model of pollen source area for an entire lake surface.Quat Res, 39(2): 239–244
CrossRef
Google scholar
|
[52] |
Sugita S (1994). Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation.J Ecol, 82(4): 881–897
CrossRef
Google scholar
|
[53] |
Sun A, Yang Y, Wu H, Ran M (2020). Climate change on the northeastern Tibetan Plateau during the past ~600 years inferred from peat pollen records.Rev Palaeobot Palynol, 276: 104194
CrossRef
Google scholar
|
[54] |
Tang L Y, Mao L M, Shu J W, Li C H, Shen C M, Zhou Z Z (2016). An Illustrated Handbook of Quaternary Pollen and Spores in China. Beijing: Science Press
|
[55] |
Tarasov P, Bezrukova E, Karabanov E, Nakagawa T, Wagner M, Kulagina N, Letunova P, Abzaeva A, Granoszewski W, Riedel F (2007). Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records.Palaeogeogr Palaeoclimatol Palaeoecol, 252: 440–457
CrossRef
Google scholar
|
[56] |
ter Braak C J F, Šmilauer P (2012). CANOCO Reference Manual and User᾽s Guide: Software for Ordination. Version 5. Microcomputer Power Ithaca, New York
|
[57] |
ter Braak C J, Verdonschot P F (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology.Aquat Sci, 57: 255–289
CrossRef
Google scholar
|
[58] |
ter Braak C J, Prentice I C (2004). A theory of gradient analysis.Adv Ecol Res, 34: 235–282
CrossRef
Google scholar
|
[59] |
Tian F, Herzschuh U, Mischke S, Schlütz F (2014). What drives the recent intensified vegetation degradation in Mongolia-Climate change or human activity?.Holocene, 24(10): 1206–1215
CrossRef
Google scholar
|
[60] |
Wang F X, Qian N F, Zhang Y L, Yang H Q (1995). Pollen Flora of China. Beijing: Science Press (in Chinese)
|
[61] |
Wang J, Huang X, Zhang J, Xiang L, Xiao Y, Fontana L, Ren X, Wang Z (2020). Pollen record of humidity changes in the arid western Qilian mountains over the past 300 years and Comparison with tree-ring reconstructions.Front Earth Sci (Lausanne), 8: 562426
CrossRef
Google scholar
|
[62] |
Wang N, Liu L, Zhang Y, Cao X (2022). A modern pollen data set for the forest–meadow–steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction.Boreas, 51(4): 847–858
CrossRef
Google scholar
|
[63] |
Wang P, Lassoie J P, Morreale S J, Dong S (2015). A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China.Rangeland J, 37(1): 1–9
CrossRef
Google scholar
|
[64] |
Wang Y B, Herzschuh U (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model.Rev Palaeobot Palynol, 168(1): 31–40
CrossRef
Google scholar
|
[65] |
Wang Y B, Herzschuh U, Shumilovskikh L S, Mischke S, Birks H J B, Wischnewski J, Böhner J, Schlütz F, Lehmkuhl F, Diekmann B, Wünnemann B, Zhang C (2014). Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum–extending the concept of pollen source area to pollen-based climate reconstructions from large lakes.Clim Past, 10(1): 21–39
CrossRef
Google scholar
|
[66] |
Wang Y, Heberling G, Görzen E, Miehe G, Seeber E, Wesche K (2017). Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet.Appl Veg Sci, 20(3): 327–339
CrossRef
Google scholar
|
[67] |
Wilmshurst J, McGlone S (2005). Origin of pollen and spores in surface lake sediment: comparison of modern palynomorph assemblages in moss cushions, surface soil and surface lake sediment.Rev Palaeobot Palynol, 136(1–2): 1–15
CrossRef
Google scholar
|
[68] |
Wischnewski J, Herzschuh U, Ruhland K, Brauning A, Mischke S, Smol J, Wang L (2014). Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data.J Paleolimnol, 51(2): 287–302
CrossRef
Google scholar
|
[69] |
Wischnewski J, Kramer A, Kong Z, Mackay A, Simpson G, Mischke S, Herzschuh U (2011). Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries.Glob Change Biol, 17(11): 3376–3391
CrossRef
Google scholar
|
[70] |
Xu Q, Tian F, Bunting M J, Li Y, Ding W, Cao X, He Z (2012). Pollen source area of lake with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China.Quat Sci Rev, 37: 81–91
CrossRef
Google scholar
|
[71] |
Xu Q, Zhang S (2013). Advances in pollen source area.Adv Earth Sci, 28(9): 968–975 (in Chinese)
|
[72] |
Zhang Y, Li Y, Liu L, Wang N, Cao X (2022). No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades.Palaeogeogr Palaeoclimatol Palaeoecol, 589: 110843
CrossRef
Google scholar
|
[73] |
Zhao Y, Herzschuh U (2009). Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau.Veg Hist Archaeobot, 18(3): 245–260
CrossRef
Google scholar
|
[74] |
Zhao Y, Yu Z, Chen F, Liu X, Ito E (2008). Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China.Global Planet Change, 62(1–2): 107–114
CrossRef
Google scholar
|
[75] |
Zhao Y, Yu Z, Liu X, Zhao C, Chen F, Zhang K (2010). Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau.Quat Res, 73(1): 59–69
CrossRef
Google scholar
|
[76] |
Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM.Sci Rep, 5(1): 13318
CrossRef
Google scholar
|
/
〈 | 〉 |