Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau

Xiumei LI, Sutao LIU, Juzhi HOU, Zhe SUN, Mingda WANG, Xiaohuan HOU, Minghua LIU, Junhui YAN, Lifang ZHANG

Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (4) : 997-1011.

PDF(27833 KB)
PDF(27833 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (4) : 997-1011. DOI: 10.1007/s11707-022-1082-2
RESEARCH ARTICLE

Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau

Author information +
History +

Abstract

We present a quantitative mean annual air temperature (MAAT) record spanning the past 4700 years based on the analysis of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from a sediment core from Xiada Co, an alpine lake on the western Tibetan Plateau (TP). The record indicates a relatively stable and warm MAAT until 2200 cal yr BP; subsequently, the MAAT decreased by ~4.4°C at ~2100 cal yr BP and maintained a cooling trend until the present day, with centennial-scale oscillations centered at ~800 cal yr BP, ~600 cal yr BP, and ~190–170 cal yr BP. MAAT decreased abruptly at ~500–300 cal yr BP and reached its minimum for the past 4700 years. We assessed the representativeness of our record by comparing it with 15 published paleotemperature records from the TP spanning the past ~5000 years. The results show divergent temperature variations, including a gradual cooling trend, a warming trend, and no clear trend. We suggest that these discrepancies could be caused by factors such as the seasonality of the temperature proxies, the length of the freezing season of the lakes, the choice of proxy-temperature calibrations, and chronological errors. Our results highlight the need for more high-quality paleotemperature reconstructions with unambiguous climatic significance, clear seasonality, site-specific calibration, and robust dating, to better understand the processes, trends, and mechanisms of Holocene temperature changes on the TP.

Graphical abstract

Keywords

Tibetan Plateau / lake sediments / branched GDGTs / paleotemperature

Cite this article

Download citation ▾
Xiumei LI, Sutao LIU, Juzhi HOU, Zhe SUN, Mingda WANG, Xiaohuan HOU, Minghua LIU, Junhui YAN, Lifang ZHANG. Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau. Front. Earth Sci., 2023, 17(4): 997‒1011 https://doi.org/10.1007/s11707-022-1082-2

References

[1]
Appleby P G, Oldfield F (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment.Catena, 5(1): 1–8
CrossRef Google scholar
[2]
Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012). The state and fate of Himalayan glaciers.Science, 336(6079): 310–314
CrossRef Google scholar
[3]
Braconnot P, Harrison S P, Kageyama M, Bartlein P J, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012). Evaluation of climate models using palaeoclimatic data.Nat Clim Chang, 2(6): 417–424
CrossRef Google scholar
[4]
Bradley R S, Vuille M, Diaz H F, Vergara W (2006). Threats to water supplies in the tropical Andes.Science, 312(5781): 1755–1756
CrossRef Google scholar
[5]
Cao M, Rueda G, Rivas-Ruiz P, Trapote M C, Henriksen M, Vegas-Vilarrúbia T, Rosell-Melé A (2018). Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality.Org Geochem, 122: 98–114
CrossRef Google scholar
[6]
Chang J, Zhang E, Liu E, Shulmeister J (2017). Summer temperature variability inferred from subfossil chironomid assemblages from the south-east margin of the Qinghai–Tibetan Plateau for the last 5000 years.Holocene, 27(12): 1876–1884
CrossRef Google scholar
[7]
Chen D, Xu B, Yao T, Guo Z, Cui P, Chen F, Zhang R, Zhang X, Zhang Y, Fan J, Hou Z, Zhang T (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau.Chin Sci Bull, 60: 3025–3035
[8]
Chen F, Zhang J, Liu J, Cao X, Hou J, Zhu L, Xu X, Liu X, Wang M, Wu D, Huang L, Zeng T, Zhang S, Huang W, Zhang X, Yang K (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review.Quat Sci Rev, 243: 106444
CrossRef Google scholar
[9]
Cheng H, Edwards R L, Haug G H (2010). Comment on “On linking climate to Chinese dynastic change: spatial and temporal variations of monsoonal rain”.Chin Sci Bull, 55(32): 3734–3737
CrossRef Google scholar
[10]
Chu G, Sun Q, Wang X, Liu M, Lin Y, Xie M, Shang W, Liu J (2012). Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from northeastern China.Holocene, 22(7): 785–792
CrossRef Google scholar
[11]
Dang X, Ding W, Yang H, Pancost R D, Naafs B D A, Xue J, Lin X, Lu J, Xie S (2018). Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils.Org Geochem, 119: 72–79
CrossRef Google scholar
[12]
De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S (2014). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction.Geochim Cosmochim Acta, 141: 97–112
CrossRef Google scholar
[13]
deMenocal P B (2001). Cultural responses to climate change during the late Holocene.Science, 292(5517): 667–673
CrossRef Google scholar
[14]
Deng L, Jia G, Jin C, Li S (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate.Org Geochem, 96: 11–17
CrossRef Google scholar
[15]
Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S (2015). Distributions of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions.Biogeosciences, 12(11): 3141–3151
CrossRef Google scholar
[16]
Drotz S, Sparrman T, Nilsson M, Schleucheret J, Öquist M (2010). Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils.In: Proceedings of the National Academy of Sciences of the United States of America, 107(49): 21046–21051
CrossRef Google scholar
[17]
Feng X, Zhao C, D’Andrea W J, Hou J, Yang X, Xiao X, Shen J, Duan Y, Chen F (2022). Evidence for a relatively warm mid- to late Holocene on the southeastern Tibetan Plateau.Geophys Res Lett, 49(15): e2022GL098740
CrossRef Google scholar
[18]
Feng X, Zhao C, D’Andrea W J, Liang J, Zhou A, Shen J (2019). Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake.Earth Planet Sci Lett, 510: 26–36
CrossRef Google scholar
[19]
Foster L C, Pearson E J, Juggins S, Hodgson D A, Saunders K M, Verleyen E, Roberts S J (2016). Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes.Earth Planet Sci Lett, 433: 370–379
CrossRef Google scholar
[20]
Günther F, Thiele A, Gleixner G, Xu B, Yao T, Schouten S (2014). Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: implications for GDGT-based proxies in saline high mountain lakes.Org Geochem, 67: 19–30
CrossRef Google scholar
[21]
He Y, Hou J, Wang M, Li X, Liang X, Xie S, Jin Y (2020). Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co since the last deglaciation.Front Earth Sci (Lausanne), 8: 574206
CrossRef Google scholar
[22]
Hou J, D’Andrea W J, Liu Z (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.Quat Sci Rev, 48: 67–79
CrossRef Google scholar
[23]
Hou J, Huang Y, Zhao J, Liu Z, Colman S, An Z (2016). Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau.Geophys Res Lett, 43(3): 1323–1330
CrossRef Google scholar
[24]
Hou J, Li C G, Lee S (2019a). The temperature record of the Holocene: progress and controversies.Sci Bull (Beijing), 64(9): 565–566
CrossRef Google scholar
[25]
Hou S, Zhang W, Pang H, Wu S Y, Jenk T M, Schwikowski M, Wang Y (2019b). Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology.Cryosphere, 13(6): 1743–1752
CrossRef Google scholar
[26]
Immerzeel W W, van Beek L P H, Bierkens M F P (2010). Climate change will affect the Asian water towers.Science, 328(5984): 1382–1385
CrossRef Google scholar
[27]
IPCC (2013). IPCC, 2013: Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Comput Geom, 18: 95–123
[28]
Jacob T, Wahr J, Pfeffer W T, Swenson S (2012). Recent contributions of glaciers and ice caps to sea level rise.Nature, 482(7386): 514–518
CrossRef Google scholar
[29]
Kathayat G, Cheng H, Sinha A, Yi L, Li X, Zhang H, Li H, Ning Y, Edwards R L (2017). The Indian monsoon variability and civilization changes in the Indian subcontinent.Sci Adv, 3(12): e1701296
CrossRef Google scholar
[30]
Kennett D J, Breitenbach S F, Aquino V V, Asmerom Y, Awe J, Baldini J U, Bartlein P, Culleton B J, Ebert C, Jazwa C, Macri M J, Marwan N, Polyak V, Prufer K M, Ridley H E, Sodemann H, Winterhalder B, Haug G H (2012). Development and disintegration of Maya political systems in response to climate change.Science, 338(6108): 788–791
CrossRef Google scholar
[31]
Lei Y, Yang H, Dang X, Zhao S, Xie S (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality.Org Geochem, 94: 83–94
CrossRef Google scholar
[32]
Li C G, Wang M, Liu W, Lee S Y, Chen F, Hou J (2021b). Quantitative estimates of Holocene glacier meltwater variations on the Western Tibetan Plateau.Earth Planet Sci Lett, 559: 116766
CrossRef Google scholar
[33]
Li X, Fan B (2019). Climatic changes during the past 2000 years based on lake biomarkers from the central and western Tibetan Plateau.J Xinyang Normal Univ (Nat Sci Ed), 32(2): 239–244
CrossRef Google scholar
[34]
Li X, Liu S, Fan B, Hou J, Wang M (2023b). Validating the potential application of δ2Hwax and soil brGDGTs in paleoelevation estimates on the southern slopes of the Himalaya.Quat Sci Rev, 318: 108306
CrossRef Google scholar
[35]
Li X, Liu S, Zhang L, Yan J, Fan B (2023a). Spatio-temporal patterns of centennial scale temperature change over the Tibetan Plateau during the past two millennia.J Xinyang Normal Univ (Nat Sci Ed), 36(3): 451–456
CrossRef Google scholar
[36]
Li, X., Liu, S., Ji, K., Hou, X., Yuan, K., Hou, J., Niu, J., Yan, J., Yan, W., Wang, Y., Wang, Y., 2023. Late Holocene human population change revealed by fecal stanol records and its response to environmental evolution at Xiada Co on the western Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 111993.
[37]
Li X, Wang M, Hou J (2019). Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau.Quat Int, 510: 65–75
CrossRef Google scholar
[38]
Li X, Wang M, Zhang Y, Lei L, Hou J (2017). Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co.Quat Res, 87(3): 455–467
CrossRef Google scholar
[39]
Li X, Yan H, Fan B, Zhang C, Xing W (2021a). Climatic changes during the last two millennia on the southern Tibetan Plateau based on lake sediment and its forcing mechanisms.J Xinyang Normal Univ (Nat Sci Ed), 34(4): 584–588
CrossRef Google scholar
[40]
Li X, Zhang X, Wu J, Shen Z, Zhang Y, Xu X, Fan Y, Zhao Y, Yan W (2011). Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau.Environ Earth Sci, 64(7): 1911–1919
CrossRef Google scholar
[41]
Liang J, Guo Y, Richter N, Xie H, Vachula R S, Lupien R L, Zhao B, Wang M, Yao Y, Hou J, Liu J, Russell J M (2022). Calibration and application of branched GDGTs to Tibetan lake sediments: the influence of temperature on the fall of the Guge Kingdom in Western Tibet, China. Paleoceanogr Paleoclimatol, 37(5)
[42]
Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W, Elison Timm O (2014). The Holocene temperature conundrum.Proc Natl Acad Sci USA, 111(34): E3501–E3505
CrossRef Google scholar
[43]
Marcott S A, Shakun J D, Clark P U, Mix A C (2013). A reconstruction of regional and global temperature for the past 11300 years.Science, 339(6124): 1198–1201
CrossRef Google scholar
[44]
Mountain Research Initiative EDW Working Group (2015). Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5: 424–430
CrossRef Google scholar
[45]
Naafs B D A, Inglis G N, Zheng C, Amesbury M J, Biester H, Bindler R, Blewett J, Burrows M A, del Castillo Torres D, Chambers F M, Cohen A D, Evershed R P, Feakins S J, Gałka M, Gallego-Sala A, Gandois L, Gray D M, Hatcher P G, Honorio Coronado E N, Hughes P D M, Huguet A, Könönen M, Laggoun-Défarge F, Lähteenoja O, Lamentowicz M, Marchant R, McClymont E, Pontevedra-Pombal X, Ponton C, Pourmand A, Rizzuti A M, Rochefort L, Schellekens J, De Vleeschouwer F, Pancost R D (2017). Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids.Geochim Cosmochim Acta, 208: 285–301
CrossRef Google scholar
[46]
Naeher S, Peterse F, Smittenberg R H, Niemann H, Zigah P K, Schubert C J (2014). Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland) – implications for the application of GDGT-based proxies for lakes.Org Geochem, 66: 164–173
CrossRef Google scholar
[47]
Pang H, Hou S, Zhang W, Wu S, Jenk T M, Schwikowski M, Jouzel J (2020). Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. J Geophys Res Atmos, 125(19)
[48]
Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils.Geochim Cosmochim Acta, 96: 215–229
CrossRef Google scholar
[49]
Qian S, Yang H, Dong C, Wang Y, Wu J, Pei H, Dang X, Lu J, Zhao S, Xie S (2019). Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: implications for the use of tetraether-based proxies.Org Geochem, 128: 108–121
CrossRef Google scholar
[50]
Russell J M, Hopmans E C, Loomis S E, Liang J, Sinninghe Damsté J S (2018). Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations.Org Geochem, 117: 56–69
CrossRef Google scholar
[51]
Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review.Org Geochem, 54: 19–61
CrossRef Google scholar
[52]
Shanahan T M, Hughen K A, Van Mooy B A S (2013). Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes.Org Geochem, 64: 119–128
CrossRef Google scholar
[53]
Sinninghe Damsté J S (2016). Spatial heterogeneity of sources of branched tetraethers in shelf systems: the geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia).Geochim Cosmochim Acta, 186: 13–31
CrossRef Google scholar
[54]
Snyder C W (2010). The value of paleoclimate research in our changing climate.Clim Change, 100(3–4): 407–418
CrossRef Google scholar
[55]
Sun Q, Chu G, Liu M, Xie M, Li S, Ling Y, Wang X, Shi L, Jia G, Lü H (2011). Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal.J Geophys Res, 116: G01008
CrossRef Google scholar
[56]
Sun Z, Hou X, Ji K, Yuan K, Li C, Wang M, Hou J (2022). Potential winter-season bias of annual temperature variations in monsoonal Tibetan Plateau since the last deglaciation.Quat Sci Rev, 292: 107690
CrossRef Google scholar
[57]
Thompson L G, Mosley-Thompson E, Brecher H, Davis M, León B, Les D, Lin P N, Mashiotta T, Mountain K (2006). Abrupt tropical climate change: past and present.Proc Natl Acad Sci USA, 103(28): 10536–10543
CrossRef Google scholar
[58]
Thompson L G, Yao T, Davis M, Henderson K, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J (1997). Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core.Science, 276(5320): 1821–1825
CrossRef Google scholar
[59]
Tierney J E, Russell J M, Eggermont H, Hopmans E, Verschuren D, Sinninghe Damsté J S (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments.Geochim Cosmochim Acta, 74(17): 4902–4918
CrossRef Google scholar
[60]
Wang H, Dong H, Zhang C L, Jiang H, Liu Z, Zhao M, Liu W (2015a). Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai–Tibetan Plateau.Quat Res, 83(1): 116–126
CrossRef Google scholar
[61]
Wang M D, Liang J, Hou J Z, Hu L (2016). Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors.Sci China Earth Sci, 59(5): 961–974
CrossRef Google scholar
[62]
Wang M, Hou J, Duan Y, Chen J, Li X, He Y, Lee S Y, Chen F (2021). Internal feedbacks forced Middle Holocene cooling on the Qinghai Tibetan Plateau.Boreas, 50(4): 1116–1130
CrossRef Google scholar
[63]
Wang Z, Liu Z, Zhang F, Fu M, An Z (2015b). A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau.Org Geochem, 88: 50–58
CrossRef Google scholar
[64]
Wang Z, Zhang F, Cao Y, Hu J, Wang H, Lu H, Dong J, Xing M, Liu H, Wang H, Liu H (2022). Linking sedimentary and speleothem precipitation isotope proxy records to improve lacustrine and marine 14C chronologies.Quat Sci Rev, 282: 107444
CrossRef Google scholar
[65]
Weijers J W H, Bernhardt B, Peterse F, Werne J P, Dungait J A J, Schouten S, Sinninghe Damsté J S (2011). Absence of seasonal patterns in MBT–CBT indices in mid-latitude soils.Geochim Cosmochim Acta, 75(11): 3179–3190
CrossRef Google scholar
[66]
Weijers J W H, Schouten S, Spaargaren O C, Sinninghe Damsté J S (2006). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX 86 proxy and the BIT index.Org Geochem, 37(12): 1680–1693
CrossRef Google scholar
[67]
Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils.Geochim Cosmochim Acta, 71(3): 703–713
CrossRef Google scholar
[68]
Wu D, Cao J, Jia G, Guo H, Shi F, Zhang X, Rao Z (2020). Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia.Palaeogeogr Palaeoclimatol Palaeoecol, 538: 109464
CrossRef Google scholar
[69]
Wu X, Dong H, Zhang C L, Liu X, Hou W, Zhang J, Jiang H (2013). Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau.Org Geochem, 61: 45–56
CrossRef Google scholar
[70]
Yan T, Zhao C, Yan H, Shi G, Sun X, Zhang C, Feng X, Leng C (2021). Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 570: 110364
CrossRef Google scholar
[71]
Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F, Liu J, Sigman D M, Peterson L C, Haug G H (2007). Influence of the intertropical convergence zone on the East Asian monsoon.Nature, 445(7123): 74–77
CrossRef Google scholar
[72]
Yang H, Lü X, Ding W, Lei Y, Dang X, Xie S (2015). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia.Org Geochem, 82: 42–53
CrossRef Google scholar
[73]
Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.Nat Clim Chang, 2(9): 663–667
CrossRef Google scholar
[74]
Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau K M, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun , Yang X, Ma Y, Shen S S P, Su Z, Chen F, Liang S, Liu Y, Singh V P, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q (2019). Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis.Bull Am Meteorol Soc, 100(3): 423–444
CrossRef Google scholar
[75]
Zhang C, Zhao C, Yu S Y, Yang X, Cheng J, Zhang X, Xue B, Shen J, Chen F (2022). Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau.Earth Sci Rev, 226: 103927
CrossRef Google scholar
[76]
Zhang E, Chang J, Cao Y, Sun W, Shulmeister J, Tang H, Langdon P G, Yang X, Shen J (2017). Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau.Quat Sci Rev, 165: 1–12
CrossRef Google scholar
[77]
Zhang Z, Tian H, Cazelles B, Kausrud K L, Bräuning A, Guo F, Stenseth N C (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10-1900.Proc Biol Sci, 277(1701): 3745–3753
CrossRef Google scholar
[78]
Zhao C, Rohling E J, Liu Z, Yang X, Zhang E, Cheng J, Liu Z, An Z, Yang X, Feng X, Sun X, Zhang C, Yan T, Long H, Yan H, Yu Z, Liu W, Yu S Y, Shen J (2021). Possible obliquity-forced warmth in southern Asia during the last glacial stage.Sci Bull (Beijing), 66(11): 1136–1145
CrossRef Google scholar
[79]
Zhou W, Cheng P, Jull A, Lu X, An Z, Wang H, Zhu Y, Wu Z (2014). 14C chronostratigraphy for Qinghai Lake in China.Radiocarbon, 56: 143–155
CrossRef Google scholar
[80]
Zhu Z, Wu J, Rioual P, Mingram J, Yang H, Zhang B, Chu G, Liu J (2021). Evaluation of the sources and seasonal production of brGDGTs in lake Sihailongwan (N.E. China) and application to reconstruct paleo-temperatures over the period 60–8 ka BP.Quat Sci Rev, 261: 106946
CrossRef Google scholar

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 41901105), the Research and Practice Project of Teaching Reform in universities of Henan Province (No. 2022SYJXLX062), the Key Scientific and Technological Research Project of Henan Province (No. 222102320128), the Training Plan of young backbone teachers in Henan Colleges and universities (Nos. 2020GGJS158, 2023GGJS096), and the Nanhu Scholars Program for Young Scholars of XYNU. We thank the editors and three anonymous reviewers for their contractive comments. We appreciate Dr. Jan Bloemendal for English language improvement.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2023 Higher Education Press
审图号:GS京(2024)0126号
AI Summary AI Mindmap
PDF(27833 KB)

Accesses

Citations

Detail

Sections
Recommended

/