
Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau
Xiumei LI, Sutao LIU, Juzhi HOU, Zhe SUN, Mingda WANG, Xiaohuan HOU, Minghua LIU, Junhui YAN, Lifang ZHANG
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (4) : 997-1011.
Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau
We present a quantitative mean annual air temperature (MAAT) record spanning the past 4700 years based on the analysis of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from a sediment core from Xiada Co, an alpine lake on the western Tibetan Plateau (TP). The record indicates a relatively stable and warm MAAT until 2200 cal yr BP; subsequently, the MAAT decreased by ~4.4°C at ~2100 cal yr BP and maintained a cooling trend until the present day, with centennial-scale oscillations centered at ~800 cal yr BP, ~600 cal yr BP, and ~190–170 cal yr BP. MAAT decreased abruptly at ~500–300 cal yr BP and reached its minimum for the past 4700 years. We assessed the representativeness of our record by comparing it with 15 published paleotemperature records from the TP spanning the past ~5000 years. The results show divergent temperature variations, including a gradual cooling trend, a warming trend, and no clear trend. We suggest that these discrepancies could be caused by factors such as the seasonality of the temperature proxies, the length of the freezing season of the lakes, the choice of proxy-temperature calibrations, and chronological errors. Our results highlight the need for more high-quality paleotemperature reconstructions with unambiguous climatic significance, clear seasonality, site-specific calibration, and robust dating, to better understand the processes, trends, and mechanisms of Holocene temperature changes on the TP.
Tibetan Plateau / lake sediments / branched GDGTs / paleotemperature
[1] |
Appleby P G, Oldfield F (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment.Catena, 5(1): 1–8
CrossRef
Google scholar
|
[2] |
Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012). The state and fate of Himalayan glaciers.Science, 336(6079): 310–314
CrossRef
Google scholar
|
[3] |
Braconnot P, Harrison S P, Kageyama M, Bartlein P J, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012). Evaluation of climate models using palaeoclimatic data.Nat Clim Chang, 2(6): 417–424
CrossRef
Google scholar
|
[4] |
Bradley R S, Vuille M, Diaz H F, Vergara W (2006). Threats to water supplies in the tropical Andes.Science, 312(5781): 1755–1756
CrossRef
Google scholar
|
[5] |
Cao M, Rueda G, Rivas-Ruiz P, Trapote M C, Henriksen M, Vegas-Vilarrúbia T, Rosell-Melé A (2018). Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality.Org Geochem, 122: 98–114
CrossRef
Google scholar
|
[6] |
Chang J, Zhang E, Liu E, Shulmeister J (2017). Summer temperature variability inferred from subfossil chironomid assemblages from the south-east margin of the Qinghai–Tibetan Plateau for the last 5000 years.Holocene, 27(12): 1876–1884
CrossRef
Google scholar
|
[7] |
Chen D, Xu B, Yao T, Guo Z, Cui P, Chen F, Zhang R, Zhang X, Zhang Y, Fan J, Hou Z, Zhang T (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau.Chin Sci Bull, 60: 3025–3035
|
[8] |
Chen F, Zhang J, Liu J, Cao X, Hou J, Zhu L, Xu X, Liu X, Wang M, Wu D, Huang L, Zeng T, Zhang S, Huang W, Zhang X, Yang K (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review.Quat Sci Rev, 243: 106444
CrossRef
Google scholar
|
[9] |
Cheng H, Edwards R L, Haug G H (2010). Comment on “On linking climate to Chinese dynastic change: spatial and temporal variations of monsoonal rain”.Chin Sci Bull, 55(32): 3734–3737
CrossRef
Google scholar
|
[10] |
Chu G, Sun Q, Wang X, Liu M, Lin Y, Xie M, Shang W, Liu J (2012). Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from northeastern China.Holocene, 22(7): 785–792
CrossRef
Google scholar
|
[11] |
Dang X, Ding W, Yang H, Pancost R D, Naafs B D A, Xue J, Lin X, Lu J, Xie S (2018). Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils.Org Geochem, 119: 72–79
CrossRef
Google scholar
|
[12] |
De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S (2014). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction.Geochim Cosmochim Acta, 141: 97–112
CrossRef
Google scholar
|
[13] |
deMenocal P B (2001). Cultural responses to climate change during the late Holocene.Science, 292(5517): 667–673
CrossRef
Google scholar
|
[14] |
Deng L, Jia G, Jin C, Li S (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate.Org Geochem, 96: 11–17
CrossRef
Google scholar
|
[15] |
Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S (2015). Distributions of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions.Biogeosciences, 12(11): 3141–3151
CrossRef
Google scholar
|
[16] |
Drotz S, Sparrman T, Nilsson M, Schleucheret J, Öquist M (2010). Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils.In: Proceedings of the National Academy of Sciences of the United States of America, 107(49): 21046–21051
CrossRef
Google scholar
|
[17] |
Feng X, Zhao C, D’Andrea W J, Hou J, Yang X, Xiao X, Shen J, Duan Y, Chen F (2022). Evidence for a relatively warm mid- to late Holocene on the southeastern Tibetan Plateau.Geophys Res Lett, 49(15): e2022GL098740
CrossRef
Google scholar
|
[18] |
Feng X, Zhao C, D’Andrea W J, Liang J, Zhou A, Shen J (2019). Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake.Earth Planet Sci Lett, 510: 26–36
CrossRef
Google scholar
|
[19] |
Foster L C, Pearson E J, Juggins S, Hodgson D A, Saunders K M, Verleyen E, Roberts S J (2016). Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes.Earth Planet Sci Lett, 433: 370–379
CrossRef
Google scholar
|
[20] |
Günther F, Thiele A, Gleixner G, Xu B, Yao T, Schouten S (2014). Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: implications for GDGT-based proxies in saline high mountain lakes.Org Geochem, 67: 19–30
CrossRef
Google scholar
|
[21] |
He Y, Hou J, Wang M, Li X, Liang X, Xie S, Jin Y (2020). Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co since the last deglaciation.Front Earth Sci (Lausanne), 8: 574206
CrossRef
Google scholar
|
[22] |
Hou J, D’Andrea W J, Liu Z (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.Quat Sci Rev, 48: 67–79
CrossRef
Google scholar
|
[23] |
Hou J, Huang Y, Zhao J, Liu Z, Colman S, An Z (2016). Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau.Geophys Res Lett, 43(3): 1323–1330
CrossRef
Google scholar
|
[24] |
Hou J, Li C G, Lee S (2019a). The temperature record of the Holocene: progress and controversies.Sci Bull (Beijing), 64(9): 565–566
CrossRef
Google scholar
|
[25] |
Hou S, Zhang W, Pang H, Wu S Y, Jenk T M, Schwikowski M, Wang Y (2019b). Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology.Cryosphere, 13(6): 1743–1752
CrossRef
Google scholar
|
[26] |
Immerzeel W W, van Beek L P H, Bierkens M F P (2010). Climate change will affect the Asian water towers.Science, 328(5984): 1382–1385
CrossRef
Google scholar
|
[27] |
IPCC (2013). IPCC, 2013: Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Comput Geom, 18: 95–123
|
[28] |
Jacob T, Wahr J, Pfeffer W T, Swenson S (2012). Recent contributions of glaciers and ice caps to sea level rise.Nature, 482(7386): 514–518
CrossRef
Google scholar
|
[29] |
Kathayat G, Cheng H, Sinha A, Yi L, Li X, Zhang H, Li H, Ning Y, Edwards R L (2017). The Indian monsoon variability and civilization changes in the Indian subcontinent.Sci Adv, 3(12): e1701296
CrossRef
Google scholar
|
[30] |
Kennett D J, Breitenbach S F, Aquino V V, Asmerom Y, Awe J, Baldini J U, Bartlein P, Culleton B J, Ebert C, Jazwa C, Macri M J, Marwan N, Polyak V, Prufer K M, Ridley H E, Sodemann H, Winterhalder B, Haug G H (2012). Development and disintegration of Maya political systems in response to climate change.Science, 338(6108): 788–791
CrossRef
Google scholar
|
[31] |
Lei Y, Yang H, Dang X, Zhao S, Xie S (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality.Org Geochem, 94: 83–94
CrossRef
Google scholar
|
[32] |
Li C G, Wang M, Liu W, Lee S Y, Chen F, Hou J (2021b). Quantitative estimates of Holocene glacier meltwater variations on the Western Tibetan Plateau.Earth Planet Sci Lett, 559: 116766
CrossRef
Google scholar
|
[33] |
Li X, Fan B (2019). Climatic changes during the past 2000 years based on lake biomarkers from the central and western Tibetan Plateau.J Xinyang Normal Univ (Nat Sci Ed), 32(2): 239–244
CrossRef
Google scholar
|
[34] |
Li X, Liu S, Fan B, Hou J, Wang M (2023b). Validating the potential application of δ2Hwax and soil brGDGTs in paleoelevation estimates on the southern slopes of the Himalaya.Quat Sci Rev, 318: 108306
CrossRef
Google scholar
|
[35] |
Li X, Liu S, Zhang L, Yan J, Fan B (2023a). Spatio-temporal patterns of centennial scale temperature change over the Tibetan Plateau during the past two millennia.J Xinyang Normal Univ (Nat Sci Ed), 36(3): 451–456
CrossRef
Google scholar
|
[36] |
Li, X., Liu, S., Ji, K., Hou, X., Yuan, K., Hou, J., Niu, J., Yan, J., Yan, W., Wang, Y., Wang, Y.
|
[37] |
Li X, Wang M, Hou J (2019). Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau.Quat Int, 510: 65–75
CrossRef
Google scholar
|
[38] |
Li X, Wang M, Zhang Y, Lei L, Hou J (2017). Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co.Quat Res, 87(3): 455–467
CrossRef
Google scholar
|
[39] |
Li X, Yan H, Fan B, Zhang C, Xing W (2021a). Climatic changes during the last two millennia on the southern Tibetan Plateau based on lake sediment and its forcing mechanisms.J Xinyang Normal Univ (Nat Sci Ed), 34(4): 584–588
CrossRef
Google scholar
|
[40] |
Li X, Zhang X, Wu J, Shen Z, Zhang Y, Xu X, Fan Y, Zhao Y, Yan W (2011). Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau.Environ Earth Sci, 64(7): 1911–1919
CrossRef
Google scholar
|
[41] |
Liang J, Guo Y, Richter N, Xie H, Vachula R S, Lupien R L, Zhao B, Wang M, Yao Y, Hou J, Liu J, Russell J M (2022). Calibration and application of branched GDGTs to Tibetan lake sediments: the influence of temperature on the fall of the Guge Kingdom in Western Tibet, China. Paleoceanogr Paleoclimatol, 37(5)
|
[42] |
Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W, Elison Timm O (2014). The Holocene temperature conundrum.Proc Natl Acad Sci USA, 111(34): E3501–E3505
CrossRef
Google scholar
|
[43] |
Marcott S A, Shakun J D, Clark P U, Mix A C (2013). A reconstruction of regional and global temperature for the past 11300 years.Science, 339(6124): 1198–1201
CrossRef
Google scholar
|
[44] |
Mountain Research Initiative EDW Working Group (2015). Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5: 424–430
CrossRef
Google scholar
|
[45] |
Naafs B D A, Inglis G N, Zheng C, Amesbury M J, Biester H, Bindler R, Blewett J, Burrows M A, del Castillo Torres D, Chambers F M, Cohen A D, Evershed R P, Feakins S J, Gałka M, Gallego-Sala A, Gandois L, Gray D M, Hatcher P G, Honorio Coronado E N, Hughes P D M, Huguet A, Könönen M, Laggoun-Défarge F, Lähteenoja O, Lamentowicz M, Marchant R, McClymont E, Pontevedra-Pombal X, Ponton C, Pourmand A, Rizzuti A M, Rochefort L, Schellekens J, De Vleeschouwer F, Pancost R D (2017). Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids.Geochim Cosmochim Acta, 208: 285–301
CrossRef
Google scholar
|
[46] |
Naeher S, Peterse F, Smittenberg R H, Niemann H, Zigah P K, Schubert C J (2014). Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland) – implications for the application of GDGT-based proxies for lakes.Org Geochem, 66: 164–173
CrossRef
Google scholar
|
[47] |
Pang H, Hou S, Zhang W, Wu S, Jenk T M, Schwikowski M, Jouzel J (2020). Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. J Geophys Res Atmos, 125(19)
|
[48] |
Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils.Geochim Cosmochim Acta, 96: 215–229
CrossRef
Google scholar
|
[49] |
Qian S, Yang H, Dong C, Wang Y, Wu J, Pei H, Dang X, Lu J, Zhao S, Xie S (2019). Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: implications for the use of tetraether-based proxies.Org Geochem, 128: 108–121
CrossRef
Google scholar
|
[50] |
Russell J M, Hopmans E C, Loomis S E, Liang J, Sinninghe Damsté J S (2018). Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations.Org Geochem, 117: 56–69
CrossRef
Google scholar
|
[51] |
Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review.Org Geochem, 54: 19–61
CrossRef
Google scholar
|
[52] |
Shanahan T M, Hughen K A, Van Mooy B A S (2013). Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes.Org Geochem, 64: 119–128
CrossRef
Google scholar
|
[53] |
Sinninghe Damsté J S (2016). Spatial heterogeneity of sources of branched tetraethers in shelf systems: the geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia).Geochim Cosmochim Acta, 186: 13–31
CrossRef
Google scholar
|
[54] |
Snyder C W (2010). The value of paleoclimate research in our changing climate.Clim Change, 100(3–4): 407–418
CrossRef
Google scholar
|
[55] |
Sun Q, Chu G, Liu M, Xie M, Li S, Ling Y, Wang X, Shi L, Jia G, Lü H (2011). Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal.J Geophys Res, 116: G01008
CrossRef
Google scholar
|
[56] |
Sun Z, Hou X, Ji K, Yuan K, Li C, Wang M, Hou J (2022). Potential winter-season bias of annual temperature variations in monsoonal Tibetan Plateau since the last deglaciation.Quat Sci Rev, 292: 107690
CrossRef
Google scholar
|
[57] |
Thompson L G, Mosley-Thompson E, Brecher H, Davis M, León B, Les D, Lin P N, Mashiotta T, Mountain K (2006). Abrupt tropical climate change: past and present.Proc Natl Acad Sci USA, 103(28): 10536–10543
CrossRef
Google scholar
|
[58] |
Thompson L G, Yao T, Davis M, Henderson K, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J (1997). Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core.Science, 276(5320): 1821–1825
CrossRef
Google scholar
|
[59] |
Tierney J E, Russell J M, Eggermont H, Hopmans E, Verschuren D, Sinninghe Damsté J S (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments.Geochim Cosmochim Acta, 74(17): 4902–4918
CrossRef
Google scholar
|
[60] |
Wang H, Dong H, Zhang C L, Jiang H, Liu Z, Zhao M, Liu W (2015a). Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai–Tibetan Plateau.Quat Res, 83(1): 116–126
CrossRef
Google scholar
|
[61] |
Wang M D, Liang J, Hou J Z, Hu L (2016). Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors.Sci China Earth Sci, 59(5): 961–974
CrossRef
Google scholar
|
[62] |
Wang M, Hou J, Duan Y, Chen J, Li X, He Y, Lee S Y, Chen F (2021). Internal feedbacks forced Middle Holocene cooling on the Qinghai Tibetan Plateau.Boreas, 50(4): 1116–1130
CrossRef
Google scholar
|
[63] |
Wang Z, Liu Z, Zhang F, Fu M, An Z (2015b). A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau.Org Geochem, 88: 50–58
CrossRef
Google scholar
|
[64] |
Wang Z, Zhang F, Cao Y, Hu J, Wang H, Lu H, Dong J, Xing M, Liu H, Wang H, Liu H (2022). Linking sedimentary and speleothem precipitation isotope proxy records to improve lacustrine and marine 14C chronologies.Quat Sci Rev, 282: 107444
CrossRef
Google scholar
|
[65] |
Weijers J W H, Bernhardt B, Peterse F, Werne J P, Dungait J A J, Schouten S, Sinninghe Damsté J S (2011). Absence of seasonal patterns in MBT–CBT indices in mid-latitude soils.Geochim Cosmochim Acta, 75(11): 3179–3190
CrossRef
Google scholar
|
[66] |
Weijers J W H, Schouten S, Spaargaren O C, Sinninghe Damsté J S (2006). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX 86 proxy and the BIT index.Org Geochem, 37(12): 1680–1693
CrossRef
Google scholar
|
[67] |
Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils.Geochim Cosmochim Acta, 71(3): 703–713
CrossRef
Google scholar
|
[68] |
Wu D, Cao J, Jia G, Guo H, Shi F, Zhang X, Rao Z (2020). Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia.Palaeogeogr Palaeoclimatol Palaeoecol, 538: 109464
CrossRef
Google scholar
|
[69] |
Wu X, Dong H, Zhang C L, Liu X, Hou W, Zhang J, Jiang H (2013). Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau.Org Geochem, 61: 45–56
CrossRef
Google scholar
|
[70] |
Yan T, Zhao C, Yan H, Shi G, Sun X, Zhang C, Feng X, Leng C (2021). Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 570: 110364
CrossRef
Google scholar
|
[71] |
Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F, Liu J, Sigman D M, Peterson L C, Haug G H (2007). Influence of the intertropical convergence zone on the East Asian monsoon.Nature, 445(7123): 74–77
CrossRef
Google scholar
|
[72] |
Yang H, Lü X, Ding W, Lei Y, Dang X, Xie S (2015). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia.Org Geochem, 82: 42–53
CrossRef
Google scholar
|
[73] |
Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.Nat Clim Chang, 2(9): 663–667
CrossRef
Google scholar
|
[74] |
Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau K M, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun , Yang X, Ma Y, Shen S S P, Su Z, Chen F, Liang S, Liu Y, Singh V P, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q (2019). Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis.Bull Am Meteorol Soc, 100(3): 423–444
CrossRef
Google scholar
|
[75] |
Zhang C, Zhao C, Yu S Y, Yang X, Cheng J, Zhang X, Xue B, Shen J, Chen F (2022). Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau.Earth Sci Rev, 226: 103927
CrossRef
Google scholar
|
[76] |
Zhang E, Chang J, Cao Y, Sun W, Shulmeister J, Tang H, Langdon P G, Yang X, Shen J (2017). Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau.Quat Sci Rev, 165: 1–12
CrossRef
Google scholar
|
[77] |
Zhang Z, Tian H, Cazelles B, Kausrud K L, Bräuning A, Guo F, Stenseth N C (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10-1900.Proc Biol Sci, 277(1701): 3745–3753
CrossRef
Google scholar
|
[78] |
Zhao C, Rohling E J, Liu Z, Yang X, Zhang E, Cheng J, Liu Z, An Z, Yang X, Feng X, Sun X, Zhang C, Yan T, Long H, Yan H, Yu Z, Liu W, Yu S Y, Shen J (2021). Possible obliquity-forced warmth in southern Asia during the last glacial stage.Sci Bull (Beijing), 66(11): 1136–1145
CrossRef
Google scholar
|
[79] |
Zhou W, Cheng P, Jull A, Lu X, An Z, Wang H, Zhu Y, Wu Z (2014). 14C chronostratigraphy for Qinghai Lake in China.Radiocarbon, 56: 143–155
CrossRef
Google scholar
|
[80] |
Zhu Z, Wu J, Rioual P, Mingram J, Yang H, Zhang B, Chu G, Liu J (2021). Evaluation of the sources and seasonal production of brGDGTs in lake Sihailongwan (N.E. China) and application to reconstruct paleo-temperatures over the period 60–8 ka BP.Quat Sci Rev, 261: 106946
CrossRef
Google scholar
|
/
〈 |
|
〉 |