Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River: a case study from Lake Ngoring

Yang PU, Min ZHAN, Xiaohua SHAO, Josef P. WERNE, Philip A. MEYERS, Jiaojiao YAO, Da ZHI

PDF(34229 KB)
PDF(34229 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (4) : 920-932. DOI: 10.1007/s11707-022-1069-z
RESEARCH ARTICLE

Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River: a case study from Lake Ngoring

Author information +
History +

Abstract

In the north-eastern Qinghai-Tibet Plateau (QTP), the source area of the Yellow River (SAYR) has been experiencing significant changes in climatic and environmental conditions in recent decades. To date, few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s) of these changes. This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause. We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images. The results show that lake surface area changes were generally consistent with variations in precipitation, streamflow and the regional dry-wet index in the SAYR, suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes. These records are also comparable to the stalagmite δ18O monsoon record, as well fluctuations in the Southern Oscillation Index (SOI). Moreover, an association of high TSI (total solar insolation) anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed, implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale. Following this line of reasoning, we compared the δ13Corg-based lake level fluctuations of Lake Ngoring for the last millennium, as previously reported, with the hydroclimatic history and the reconstructed TSI record. We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium, which is also dominated by solar activity. In general, it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales, which is clearly manifested in the variations of lake area and water level of Lake Ngoring.

Graphical abstract

Keywords

Qinghai-Tibet Plateau (QTP) / source area of the Yellow River (SAYR) / lake area/level / Asian summer monsoon (ASM) / El Niño-Southern / Oscillation (ENSO) / total solar insolation (TSI)

Cite this article

Download citation ▾
Yang PU, Min ZHAN, Xiaohua SHAO, Josef P. WERNE, Philip A. MEYERS, Jiaojiao YAO, Da ZHI. Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River: a case study from Lake Ngoring. Front. Earth Sci., 2023, 17(4): 920‒932 https://doi.org/10.1007/s11707-022-1069-z

References

[1]
An Z, Colman S M, Zhou W, Li X, Brown E T, Jull A J T, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka.Sci Rep, 2(1): 619
CrossRef Google scholar
[2]
Fathian F, Dehghan Z, Bazrkar M H, Eslamian S (2016). Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran.Hydrol Sci J, 61: 892–904
CrossRef Google scholar
[3]
Gu X, Si J, Lu S, Gui Z, Xie D, Zhao Z, Li S, Li H, You Q (2019). Analysis of dry and wet change characteristics of source region of the Yellow River in historical period.Jiangsu Agric Sci, 47(23): 307–312 (in Chinese)
[4]
Guo B, Wei C, Yu Y, Liu Y, Li J, Meng C, Cai Y (2022). The dominant influencing factors of desertification changes in the source region of Yellow River: climate change or human activity?.Sci Total Environ, 813: 152512
CrossRef Google scholar
[5]
Henderson A C G, Holmes J A, Zhang J, Leng M J, Carvalho L R (2003). A carbon- and oxygen- isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau.Chin Sci Bull, 48(14): 1463–1468
CrossRef Google scholar
[6]
He Y, Liu W, Zhao C, Wang Z, Wang H, Liu Y, Qin X, Hu Q, An Z, Liu Z (2013). Solar influenced late Holocene temperature changes on the northern Tibetan Plateau.Chin Sci Bull, 58(9): 1053–1059
CrossRef Google scholar
[7]
Hu Y, Maskey S, Uhlenbrook S, Zhao H (2011). Streamflow trends and climate linkages in the source region of the Yellow River, China.Hydrol Processes, 25(22): 3399–3411
CrossRef Google scholar
[8]
Jiang J, Meng B, Liu H, Wang H, Kolpakova M, Krivonogov S, Song M, Zhou A, Liu W, Liu Z (2021). Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes.Chem Geol, 565: 120070
CrossRef Google scholar
[9]
Jin H, He R, Cheng G, Wu Q, Wang S, Lü L, Chang X (2009). Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts.Environ Res Lett, 4(4): 045206
CrossRef Google scholar
[10]
Kang S, Xu Y, You Q, Flügel W A, Pepin N, Yao T (2010). Review of climate and cryospheric change in the Tibetan Plateau.Environ Res Lett, 5(1): 015101
CrossRef Google scholar
[11]
Khosravi K, Golkarian A, Melesse A M, Deo R C (2022). Suspended sediment load modeling using advanced hybrid rotation forest based elastic network approach.J Hydrol (Amst), 610: 127963
CrossRef Google scholar
[12]
Kirillin G, Wen L, Shatwell T (2017). Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands.Hydrol Earth Syst Sci, 21(4): 1895–1909
CrossRef Google scholar
[13]
Lei Y, Yang K, Wang B, Sheng Y, Bird B W, Zhang G, Tian L (2014). Response of inland lake dynamics over the Tibetan Plateau to climate change.Clim Change, 125(2): 281–290
CrossRef Google scholar
[14]
Lei Y, Yao T, Bird B W, Yang K, Zhai J, Sheng Y (2013). Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution.J Hydrol (Amst), 483: 61–67
CrossRef Google scholar
[15]
Lei Y, Zhu Y, Wang B, Yao T, Yang K, Zhang X, Zhai J, Ma N (2019). Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Niño.Geophys Res Lett, 46(11): 5889–5898
CrossRef Google scholar
[16]
Li Q, Yang M, Wan G, Wang X (2016). Spatial and temporal precipitation variability in the source region of the Yellow River.Environ Earth Sci, 75(7): 594
CrossRef Google scholar
[17]
Lister G S, Kelts K, Zao C K, Yu J Q, Niessen F (1991). Lake Qinghai, China: closed basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene.Palaeogeogr Palaeoclimatol Palaeoecol, 84(1–4): 141–162
CrossRef Google scholar
[18]
Liu C, Zeng Y (2004). Changes of pan evaporation in the recent 40 years in the Yellow River Basin.Water Int, 29(4): 510–516
CrossRef Google scholar
[19]
Liu J, Wang S, Yu S, Yang D, Zhang L (2009). Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau.Global Planet Change, 67(3–4): 209–217
CrossRef Google scholar
[20]
Liu S, Duan A, Wu G (2020). Asymmetrical response of the east Asian summer monsoon to the quadrennial oscillation of global sea surface temperature associated with the Tibetan Plateau thermal feedback.J Geophys Res: Atmos, 125(20): e2019JD032129
CrossRef Google scholar
[21]
Liu W, Li X, An Z, Xu L, Zhang Q (2013). Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China.Chem Geol, 347: 153–160
CrossRef Google scholar
[22]
Luo D, Jin H, Bense V F, Jin X, Li X (2020). Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the headwater area of the Yellow River, Tibetan Plateau.Geoderma, 376(D5): 114531
CrossRef Google scholar
[23]
Magny M (1993). Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14c record.Quat Res, 40(1): 1–9
CrossRef Google scholar
[24]
Mann H B (1945). Non-parametric tests against trend.Econometrica, 13(3): 245–259
CrossRef Google scholar
[25]
Mason I, Guzkowska M, Rapley C, Street-Perrott F (1994). The response of lake levels and areas to climatic change.Clim Change, 27(2): 161–197
CrossRef Google scholar
[26]
McFeeters S K (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features.Int J Remote Sens, 17(7): 1425–1432
CrossRef Google scholar
[27]
McKee T B, Doesken N J, Kleist J R (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 179–183
[28]
Meng F, Su F, Yang D, Tong K, Hao Z (2016). Impacts of recent climate change on the hydrology in the source region of the Yellow River basin.J Hydrol Reg Stud, 6: 66–81
CrossRef Google scholar
[29]
Ming G, Zhou W, Cheng P, Wang H, Xian F, Fu Y, Wu S, Du H (2020). Lacustrine record from the eastern Tibetan Plateau associated with Asian summer monsoon changes over the past ~ 6 ka and its links with solar and ENSO activity.Clim Dyn, 55(5–6): 1075–1086
CrossRef Google scholar
[30]
Morrill C, Overpeck J T, Cole J E, Liu K, Shen C, Tang L (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet.Quat Res, 65(2): 232–243
CrossRef Google scholar
[31]
Ning D, Jiang Q, Ji M, Zheng J, Kuai X, Ge Y, Xu Y, Cheng L, Zhao W (2022). Sedimentary black carbon isotope record of Holocene climate changes on the northeastern Tibetan Plateau.Paleoceanogr Paleoclimatol, 37(8): e2022PA004487
CrossRef Google scholar
[32]
Pu Y, Werne J P, Meyers P A, Zhang H (2020). Organic matter geochemical signatures of sediments of Lake Ngoring (Qinghai-Tibetan Plateau): a record of environmental and climatic changes in the source area of the Yellow River for the last 1500 years.Palaeogeogr Palaeoclimatol Palaeoecol, 551: 109729
CrossRef Google scholar
[33]
Pu Y, Zhang H, Lei G, Chang F, Yang M, Huang X (2009). n-alkane distribution coupled with organic carbon isotope composition in the shell bar section, Qarhan paleolake, Qaidam Basin, NE Tibetan Plateau.Front Earth Sci China, 3(3): 327–335
CrossRef Google scholar
[34]
Pu Y, Zhang H, Lei G, Chang F, Yang M, Zhang W, Lei Y, Yang L, Pang Y (2010). Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3.Sci China Earth Sci, 53(6): 863–870
CrossRef Google scholar
[35]
Ropelewski C F, Halpert M S (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO).Mon Weather Rev, 114(12): 2352–2362
CrossRef Google scholar
[36]
Sheppard P R, Tarasov P E, Graumlich L J, Heussner K U, Wagner M, Österle H, Thompson L G (2004). Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China.Clim Dyn, 23(7): 869–881
CrossRef Google scholar
[37]
Song C, Huang B, Ke L, Richards K S (2014). Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts.J Hydrol (Amst), 514: 131–144
CrossRef Google scholar
[38]
Stager J C, Ruzmaikin A, Conway D, Verburg P, Mason P J (2007). Sunspots, El Niño, and the levels of Lake Victoria, East Africa.J Geophys Res, 112(D15): D15106
CrossRef Google scholar
[39]
Tan L, Cai Y, Yi L, An Z, Ai L (2008). Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity.Clim Past, 4(1): 19–28
CrossRef Google scholar
[40]
Tian F, Wang Y, Dong J, Yuan L, Tang W (2022). An 1800-year record of lake level and climate change from alkaline lakes in southern Inner Mongolia, China.J Paleolimnol, 67(1): 59–73
CrossRef Google scholar
[41]
Tian H, Lan Y, Wen J, Jin H, Wang C, Wang X, Kang Y (2015). Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts.J Geogr Sci, 25(6): 643–668
CrossRef Google scholar
[42]
Tian M, Zhao J, Wang J, Li T (2021). Runoff simulation of snowmelt in the Huangheyan-Dari district of the source region of the Yellow River based on UEB model.J Qinghai Univ, 39(02): 98–104 (in Chinese)
[43]
Vieira L E A, Solanki S K, Krivova N A, Usoskin I G (2011). Evolution of the solar irradiance during the Holocene.Astron Astrophys, 531: A6
CrossRef Google scholar
[44]
Walling D E, Fang D (2003). Recent trends in the suspended sediment loads of the world’s rivers.Global Planet Change, 39(1–2): 111–126
CrossRef Google scholar
[45]
Wan S, Hu Y, You Z, Kang J, Zhu J (2013). Extreme monthly precipitation pattern in China and its dependence on Southern Oscillation.Intern J Climat, 33(4): 806–814
CrossRef Google scholar
[46]
Wang H, He Y, Liu W, Zhou A, Kolpakova M, Krivonogov S, Liu Z (2019). Lake water depth controlling archaeal tetraether distributions in Midlatitude Asia: implications for paleo lake-level reconstruction.Geophys Res Lett, 46(10): 5274–5283
CrossRef Google scholar
[47]
Wu J, Yu Z, Zeng H, Wang N (2009). Possible solar forcing of 400-year wet-dry climate cycles in northwestern China.Clim Change, 96(4): 473–482
CrossRef Google scholar
[48]
Xu H (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.Int J Remote Sens, 27(14): 3025–3033
CrossRef Google scholar
[49]
Xu J (2018). A cave δ18O based 1800-year reconstruction of sediment load and streamflow: the Yellow River source area.Catena, 161: 137–147
CrossRef Google scholar
[50]
Zhang G, Chen W, Xie H (2019a). Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions.Geophys Res Lett, 46(22): 13107–13118
CrossRef Google scholar
[51]
Zhang G, Luo W, Chen W, Zheng G (2019b). A robust but variable lake expansion on the Tibetan Plateau.Sci Bull (Beijing), 64(18): 1306–1309
CrossRef Google scholar
[52]
Zhang G, Yao T, Shum C K, Yi S, Yang K, Xie H, Feng W, Bolch T, Wang L, Behrangi A, Zhang H, Wang W, Xiang Y, Yu J (2017). Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin.Geophys Res Lett, 44(11): 5550–5560
CrossRef Google scholar
[53]
Zhang G, Yao T, Xie H, Yang K, Zhu L, Shum C K, Bolch T, Yi S, Allen S, Jiang L, Chen W, Ke C (2020). Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms.Earth Sci Rev, 208: 103269
CrossRef Google scholar
[54]
Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record.Science, 322(5903): 940–942
CrossRef Google scholar
[55]
Zhao N, Yan H, Yang Y, Liu C, Ma X, Wang G, Zhou P, Wen H, Qu X, Dodson J (2021). A 23.7-year long daily growth rate record of a modern giant clam shell from South China Sea and its potential in high-resolution paleoclimate reconstruction.Palaeogeogr Palaeoclimatol Palaeoecol, 583: 110682
CrossRef Google scholar
[56]
Zheng H, Zhang L, Zhu R, Liu C, Sato Y, Fukushima Y (2009). Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin.Water Resour Res, 45(7): W00A19
CrossRef Google scholar
[57]
Zheng J, Wen Y (2020). Dataset of dry-wet index in the middle and upper reaches of the Yellow River over the past 2000 years. Digital J Global Change Data Repository, 2020

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42171160 and 42172205). We thank three anonymous reviewers for their thoughtful and constructive comments that greatly helped us to improve this manuscript.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2023 Higher Education Press
审图号:GS京(2024)0126号
AI Summary AI Mindmap
PDF(34229 KB)

Accesses

Citations

Detail

Sections
Recommended

/