Global precipitation change during the Holocene: a combination of records and simulations

Wangting YE, Yu LI

PDF(6891 KB)
PDF(6891 KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (1) : 112-126. DOI: 10.1007/s11707-022-1047-5
RESEARCH ARTICLE

Global precipitation change during the Holocene: a combination of records and simulations

Author information +
History +

Abstract

Precipitation can shape our climate both in the present and the future. Even though we have made significant advances in studying the mechanisms of millennial-scale climate changes through high-resolution records, we still cannot quantitatively characterize the global spatiotemporal precipitation variations within the Holocene. Therefore, we developed a new approach to integrating data from 349 globally distributed records and climate models to reconstruct regional and global precipitation patterns over the last 12000 years. Our results reveal that precipitation reconstructions can be divided into monsoon-driven and westerly driven patterns. The results suggest that an arid climate was experienced in the late glacial and early Holocene epoch (~12−7.4 cal ka BP), attaining a middle Holocene optimum (~7.4−3.5 cal ka BP), and drier after the middle Holocene. According to our reconstructions, the global precipitation reconstruction increased from the early Holocene until 3.8 cal ka BP and then subsequently decreased. In addition, our reconstructions better reproduce the low-frequency events and extreme precipitation at the millennial scale in the hemispheres, but the performance of the reconstructions in the equatorial Pacific and the Southern Hemisphere of Africa and the Americas is controversial. The resolution of the record and the simulation capability of the climate model remain important means to improve our understanding of past climate change.

Graphical abstract

Cite this article

Download citation ▾
Wangting YE, Yu LI. Global precipitation change during the Holocene: a combination of records and simulations. Front. Earth Sci., 2024, 18(1): 112‒126 https://doi.org/10.1007/s11707-022-1047-5

References

[1]
Abram N J, Mcgregor H V, Tierney J E, Evans M N, Mckay N P, Kaufman D S, Thirumalai K, Martrat B, Goosse H, Phipps S J, Steig E J, Kilbourne K H, Saenger C P, Zinke J, Leduc G, Addison J A, Mortyn P G, Seidenkrantz M, Sicre M, Selvaraj K, Filipsson H L, Neukom R, Gergis J, Curran M A J, Gunten L V (2016). Early onset of industrial-era warming across the oceans and continents.Nature, 536(7617): 411–418
CrossRef Google scholar
[2]
Adam O, Schneider T, Enzel Y, Quade J (2019). Both differential and equatorial heating contributed to African monsoon variations during the mid-Holocene.Earth Planet Sci Lett, 522: 20–29
CrossRef Google scholar
[3]
An C B, Chen F H, Barton L (2008). Holocene environmental changes in Mongolia: a review.Global Planet Change, 63(4): 283–289
CrossRef Google scholar
[4]
Asmerom Y, Polyak V J, Burns S J (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts.Nat Geosci, 3(2): 114–117
CrossRef Google scholar
[5]
Ault T R, Cole J E, Overpeck J T, Pederson G T, Meko D M (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data.J Clim, 27(20): 7529–7549
CrossRef Google scholar
[6]
Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003). Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta, 67(17): 3181–3199
[7]
Berke M A, Johnson T C, Werne J P, Grice K, Schouten S, Damste J (2012). Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa.Quat Sci Rev, 55: 59–74
CrossRef Google scholar
[8]
Boch R, Spötl C, Kramers J (2009). High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat Sci Rev, 28(23):2527–2538
[9]
BonnefilleR, ChalieF (2000). Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change, 26(1–3): 25–50
CrossRef Google scholar
[10]
Bouchette F, Schuster M, Ghienne J F, Denamiel C, Roquin C, Moussa A, Marsaleix P, Duringer P (2010). Hydrodynamics in Holocene Lake Mega-Chad.Quat Res, 73(2): 226–236
CrossRef Google scholar
[11]
Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation.Earth Planet Sci Lett, 291(1–4): 21–31
CrossRef Google scholar
[12]
ChenF H, ChenJ H, HolmesJ, Boomer I, AustinP, GatesJ B, WangN L, BrooksS J, Zhang J W (2010). Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev, 29(7–8): 1055–1068
CrossRef Google scholar
[13]
Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China.Holocene, 16(5): 675–684
CrossRef Google scholar
[14]
ChenF H, YuZ C, YangM L, Ito E, WangS M, MadsenD B, HuangX Z, ZhaoY, Sato T, BirksH J B, BoomerI, ChenJ H, AnC B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27(3–4): 351–364
CrossRef Google scholar
[15]
Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S (2019). Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales.Earth Sci Rev, 192: 337–354
CrossRef Google scholar
[16]
Constantin S, Bojar A, Lauritzen S, Lundberg J (2007). Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr, Palaeoclimatol, Palaeoecol, 243(3): 322–338
[17]
Cosford J, Qing H, Mattey D, Eglington B, Zhang M (2009). Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 280(1): 235–244
[18]
Cosford J, Qing H, Yuan D, Zhang M, Holmden C, Patterson W, Hai C (2008). Millennial-scale variability in the Asian monsoon: evidence from oxygen isotope records from stalagmites in southeastern China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 266(1): 3–12
[19]
Costa K M, Russell J M, Vogel H, Bijaksana S (2015). Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years.Palaeogeogr Palaeoclimatol Palaeoecol, 417: 467–475
CrossRef Google scholar
[20]
Cruz F W, Burns S J, Karmann I, Sharp W D, Vuille M, Cardoso A O, Ferrari J A, Silva Dias P L, Viana O (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil.Nature, 434(7029): 63–66
CrossRef Google scholar
[21]
Dean W, Rosenbaum J, Skipp G, Colman S, Forester R, Liu A, Simmons K, Bischoff J (2006). Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA.Sediment Geol, 185: 93–112
CrossRef Google scholar
[22]
deMenocalP, OrtizJ, GuildersonT, Adkins J, SarntheinM, BakerL, Yarusinsky M (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev, 19(1–5): 347–361
CrossRef Google scholar
[23]
Denniston R F, González L A, Asmerom Y, Baker RG, Reagan MK, Bettis EAI (1999a). Evidence for increased cool season moisture during the middle Holocene.Geology, 27(9): 815–818
CrossRef Google scholar
[24]
Denniston R F, González L A, Baker R G, Asmerom Y, Reagan M K, Edwards R L, Alexander E C (1999b). Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, north-central USA.The Holocene, 9(6): 671–676
CrossRef Google scholar
[25]
Dong J G, Wang Y J, Cheng H, Hardt B, Edwards R L, Kong X G, Wu J Y, Chen S T, Liu D B, Jiang X Y, Zhao K (2010). A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China.Holocene, 20(2): 257–264
CrossRef Google scholar
[26]
Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A E, Pickett M, Cartwright I, Piccini L (2006). Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian flowstone.Geology, 34: 101–104
CrossRef Google scholar
[27]
Duan F, Wang Y, Shen C C, Wang Y, Cheng H, Wu C C, Hu H M, Kong X, Liu D, Zhao K (2014). Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China.Sci Rep, 4(1): 5159
CrossRef Google scholar
[28]
DykoskiC A, Edwards R L, ChengH, YuanD X, CaiY J, ZhangM L, Lin Y S, QingJ M, AnZ S, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1–2): 71–86
CrossRef Google scholar
[29]
Filippov A, Riedel F (2009). The late Holocene mollusc fauna of the Aral Sea and its biogeographical and ecological interpretation. Limnologica, 39(1): 67–85
[30]
Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev, 26(1): 170–188
[31]
Fleitmann D, Cheng H, Braun-Badertscher S, Edwards R, Mudelsee M, Göktürk OM, Fankhauser A, Pickering R, Raible C, Matter A, Kramers J, Tuysuz O (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett, 36
[32]
Fornace K L, Hughen K A, Shanahan T M, Fritz S C, Baker P A, Sylva S P (2014). A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments.Earth Planet Sci Lett, 408: 263–271
CrossRef Google scholar
[33]
Fritz S C, Baker P A, Tapia P, Garland J (2006). Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000yrs.Quat Int, 158(1): 23–29
CrossRef Google scholar
[34]
Frumkin A, Ford DC, Schwarcz HP (1999). Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat Res, 51(3): 317–372
[35]
Gagen M H, Zorita E, McCarroll D, Zahn M, Young G H F, Robertson I (2016). North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium.Nat Geosci, 9: 630–625
CrossRef Google scholar
[36]
Găinuşă-Bogdan A, Swingedouw D, Yiou P, Cattiaux J, Codron F, Michel S (2020). AMOC and summer sea ice as key drivers of the spread in mid-holocene winter temperature patterns over Europe in PMIP3 models.Global Planet Change, 184: 103055
CrossRef Google scholar
[37]
Gasse F (2000). Hydrological changes in the African tropics since the Last Glacial Maximum.Quat Sci Rev, 19(1–5): 189–211
CrossRef Google scholar
[38]
Govindan R B, Vyushin D, Bunde A, Brenner S, Havlin S, Schellnhuber H J (2002). Global climate models violate scaling of the observed atmospheric variability.Phys Rev Lett, 89(2): 028501
CrossRef Google scholar
[39]
Griffiths M L, Drysdale R N, Gagan M K, Zhao J X, Ayliffe L K, Hellstrom J C, Hantoro W S, Frisia S, Feng Y X, Cartwright I, Pierre E S, Fischer M J, Suwargadi B W (2009). Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise.Nat Geosci, 2(9): 636–639
CrossRef Google scholar
[40]
Grootes P M, Stuiver M (1997). Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution.J Geophys Res, 102(C12): 26455–26470
CrossRef Google scholar
[41]
Hardt B, Rowe H D, Springer G S, Cheng H, Edwards R L (2010). The seasonality of east central North American precipitation based on three coeval Holocene speleothems from southern West Virginia.Earth Planet Sci Lett, 295(3–4): 342–348
CrossRef Google scholar
[42]
Hardy D R, Vuille M, Bradley R S (2003). Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia.J Geophys Res-Atmosph, 108(D22): 2003JD003623
CrossRef Google scholar
[43]
Haug G H, Hughen K A, Sigman D M, Peterson L C, Röhl U (2001). Southward migration of the intertropical convergence zone through the Holocene.Science, 293(5533): 1304–1308
CrossRef Google scholar
[44]
HeikkiläM, Edwards TW D, Seppä H, SonninenE (2010). Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology. Quat Sci Rev, 29(17–18): 2146–2160
[45]
Hodell D, Curtis J, Brenner M (1995). Possible Role of Climate in the Collapse of Classic Maya Civilization.Nature, 375: 391–394
CrossRef Google scholar
[46]
HolmgrenK, Lee-Thorp J A, CooperG R J, LundbladK, Partridge T C, ScottL, SithaldeenR, TalmaA S, TysonP D (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat Sci Rev, 22(21–22): 2311–2326
CrossRef Google scholar
[47]
Hopcroft P O, Valdes P J, Harper A B, Beerling D J (2017). Multi vegetation model evaluation of the Green Sahara climate regime.Geophys Res Lett, 44(13): 6804–6813
CrossRef Google scholar
[48]
Hu C, Henderson G, Huang J, Zhenghong C, Kathleen J (2008). Report of a three-year monitoring programme at Heshang Cave, Central China. Int J Speleol, 37
[49]
Ji J, Shen J, Balsam W, Chen J, Liu L, Liu X (2005). Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett, 233(1): 61–70
[50]
Jia Y H, Li D W, Yu M, Zhao X C, Xiang R, Li G X, Zhang H L, Zhao M X (2019). High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene.Global Planet Change, 182: 103025
CrossRef Google scholar
[51]
Johnson T C, Brown E T, McManus J, Barry S, Barker P, Gasse F (2002). A high-resolution paleoclimate record spanning the past 25000 Years in southern East Africa.Science, 296(5565): 113–132
CrossRef Google scholar
[52]
Kaufman A, Bar-Matthews M, Ayalon A, Carmi I (2003). The vadose flow above Soreq Cave, Israel: a tritium study of the cave waters. J Hydrol (Amst), 273(1): 155–163
[53]
Lachniet M S, Asmerom Y, Burns S J, Patterson W P, Polyak V J, Seltzer G O (2004). Tropical response to the 8200 yr B.P. cold event?.Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology, 32(11): 957–960
CrossRef Google scholar
[54]
Lachniet MS, Johnson L, Asmerom Y, Burns SJ, Polyak V, Patterson WP, Burt L, Azouz A (2009). Late Quaternary moisture export across Central America and to Greenland: evidence for tropical rainfall variability from Costa Rican stalagmites. Quat Sci Rev, 28(27): 3348–3360
[55]
Laepple T, Huybers P (2014). Ocean surface temperature variability: large model-data differences at decadal and longer periods.Proc Natl Acad Sci USA, 111(47): 16682–16687
CrossRef Google scholar
[56]
Lea D W, Pak D K, Spero H J (2000). Climate impact of late Quaternary equatorial pacific sea surface temperature variations.Science, 289(5485): 1719–1724
CrossRef Google scholar
[57]
LeGrande A N, Schmidt G A (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives.Clim Past, 5(3): 441–455
CrossRef Google scholar
[58]
Li Y, Wang N, Cheng H, Long H, Zhao Q (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China.Boreas, 38(2): 349–361
CrossRef Google scholar
[59]
Li Y, Wang N, Zhou X, Zhang C, Wang Y (2014). Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices.Global Planet Change, 116(5): 30–40
CrossRef Google scholar
[60]
Li Y, Xu L M (2016). Asynchronous Holocene Asian monsoon vapor transport and precipitation.Palaeogeogr Palaeoclimatol Palaeoecol, 461: 195–200
CrossRef Google scholar
[61]
Li Y, Xu L, Zhang C, Liu Y, Zhu G, Zhou X (2018). Temporal and spatial evolution of Holocene vegetation and lake hydrological status, China.Holocene, 28(5): 706–720
CrossRef Google scholar
[62]
Magee J W, Miller G H, Spooner N A, Questiaux D (2004). Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure.Geology, 32(10): 885–888
CrossRef Google scholar
[63]
Majewski J M, Switzer A D, Meltzner A J, Parham P R, Horton B P, Bradley S L, Pile J, Chiang H W, Wang X F, Ng C T, Tanzil J, Muller M, Mujahid A (2018). Holocene relative sea-level records from coral microatolls in Western Borneo, South China Sea.Holocene, 28(9): 1431–1442
CrossRef Google scholar
[64]
McGee D (2020). Glacial-interglacial precipitation changes.Annu Rev Mar Sci, 12(1): 525–557
CrossRef Google scholar
[65]
Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago.Nature, 411(6835): 290–293
CrossRef Google scholar
[66]
Oviatt CG, Madsen DB, Miller DM, Thompson RS, McGeehin JP (2015). Early Holocene Great Salt Lake, USA.Quat Res, 84(1): 57–68
CrossRef Google scholar
[67]
Parsons L A, Loope G R, Overpeck J T, Ault T R, Stouffer R, Cole J E (2017). Temperature and precipitation variance in CMIP5 simulations and paleoclimate records of the Last Millennium.J Clim, 30(22): 8885–8912
CrossRef Google scholar
[68]
Partin J W, Cobb K M, Adkins J F, Clark B, Fernandez D P (2007). Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum.Nature, 449(7161): 452–455
CrossRef Google scholar
[69]
Pausata F S R, Zhang Q, Muschitiello F, Lu Z, Chafik L, Niedermeyer E M, Stager J C, Cobb K M, Liu Z (2017). Greening of the Sahara suppressed ENSO activity during the mid-Holocene.Nat Commun, 8(1): 16020
CrossRef Google scholar
[70]
Repinski P, Holmgren K, Lauritzen S E, Lee-Thorp J A (1999). A late Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr, Palaeoclimatol, Palaeoecol, 150(3): 269–277
[71]
Ricketts R D, Johnson T C, Brown E T, Rasmussen K A, Romanovsky V V (2001). The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr, Palaeoclimatol, Palaeoecol, 176(1): 207–227
[72]
Schewe J, Levermann A (2017). Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming.Earth Syst Dyn, 8(3): 495–505
CrossRef Google scholar
[73]
ScottL (1999). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quat Int, 57–58: 215–223
CrossRef Google scholar
[74]
Shakun JD, Burns SJ, Fleitmann D, Kramers J, Matter A, Al-Subary A (2007). A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet Sci Lett, 259(3): 442–456
[75]
Shaw P A, Bateman M D, Thomas D S G, Davies F (2003). Holocene fluctuations of Lake Ngami, Middle Kalahari: chronology and responses to climatic change. Quat Int, 111(1):23–35
[76]
Shi J, Yan Q (2019). Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms.J Clim, 32(19): 6551–6569
CrossRef Google scholar
[77]
Smagorinsky J (1963). General circulation experiments with the primitive equations.Mon Weather Rev, 91(3): 99–164
CrossRef Google scholar
[78]
Springer G, Rowe H, Hardt B, Edwards R, Cheng H (2008). Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophys Res Lett, 35
[79]
Stansell N D, Rodbell D T, Licciardi J M, Sedlak C M, Schweinsberg A D, Huss E G, Delgado G M, Zimmerman S H, Finkel RC (2015). Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes.Geology, 43(8): 747–750
CrossRef Google scholar
[80]
Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017a). Arctic Ocean sea ice cover during the penultimate glacial and the Last Interglacial.Nat Commun, 8(1): 373
CrossRef Google scholar
[81]
Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S I (2017b). Holocene variability in sea ice cover, primary production, and Pacific-water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean).J Quaternary Sci, 32(3): 362–379
CrossRef Google scholar
[82]
Stocker T F, Johnsen S J (2003). A minimum thermodynamic model for the bipolar seesaw.Paleoceanography, 18(4): 1087
CrossRef Google scholar
[83]
Tierney J E, Ummenhofer C C, deMenocal P B (2015). Past and future rainfall in the Horn of Africa.Sci Adv, 1(9): e1500682
CrossRef Google scholar
[84]
Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS (2008). Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years.Science, 322(5899): 252–255
CrossRef Google scholar
[85]
Vaks A, Bar-Matthews M, Ayalon A, Schilman B, Gilmour M, Hawkesworth CJ, Frumkin A, Kaufman A, Matthews A (2003). Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat Res, 59(2): 182–193
[86]
van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008). Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett, 275(1): 54–60
[87]
Vörösmarty C J, Green P, Salisbury J, Lammers R B (2000). Global water resources: vulnerability from climate change and population growth.Science, 289(5477): 284–288
CrossRef Google scholar
[88]
Wagner J D M, Cole J E, Beck J W, Patchett P J, Henderson G M, Barnett H R (2010). Moisture variability in the southwestern United States linked to abrupt glacial climate change.Nat Geosci, 3(2): 110–113
CrossRef Google scholar
[89]
Wang X F, Auler A S, Edwards R L, Cheng H, Ito E, Wang Y J, Kong X G, Solheid M (2007). Millennial-scale precipitation changes in southern Brazil over the past 90,000 years.Geophys Res Lett, 34: L23701
CrossRef Google scholar
[90]
Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A (2001). A high - resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China.Science, 294(5550): 2345–2348
CrossRef Google scholar
[91]
Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic Climate.Science, 308(5723): 854–857
CrossRef Google scholar
[92]
Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years.Nature, 451(7182): 1090–1093
CrossRef Google scholar
[93]
Werne J P, Hollander D J, Lyons T W, Peterson L C (2000). Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela.Paleoceanography, 15(1): 19–29
CrossRef Google scholar
[94]
Williams P W, Neil H L, Zhao J X (2010). Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implications.Int J Speleol, 39(2): 99–112
CrossRef Google scholar
[95]
Xia Q, Zhao J, Collerson KD (2001). Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett, 194(1): 177–187
[96]
Xu D, Lu H, Wu N, Liu Z, Li T, Shen C, Wang L (2013). Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.Proc Natl Acad Sci USA, 110(24): 9657–9662
CrossRef Google scholar
[97]
Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F W, Liu J, Sigman D M, Peterson L C, Haug GH (2007). Influence of the intertropical convergence zone on the East Asian monsoon.Nature, 445(7123): 74–77
CrossRef Google scholar
[98]
Yang H, Johnson K R, Griffiths M L, Yoshimura K (2016). Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions.J Geophys Res Atmos, 121(14): 8410–8428
CrossRef Google scholar
[99]
Yang W, Seager R, Cane M A, Lyon B. (2014). The East African long rains in observations and models.J Clim, 27(19): 7185–7202
CrossRef Google scholar
[100]
Yang Y, Yuan D X, Cheng H, Zhang M L, Qin J M, Lin Y S, Zhu X Y, Edwards R L (2010). Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China.Sci China Earth Sci, 53(5): 633–641
CrossRef Google scholar
[101]
Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale J A, An Z, Cai Y (2004). Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon.Science, 304(5670): 575–578
CrossRef Google scholar
[102]
Zhu F, Emile-Geay J, McKay N P, Hakim G J, Khider D, Ault T R, Steig E J, Dee S, Kirchner J W (2019). Climate models can correctly simulate the continuum of global-average temperature variability.Proc Natl Acad Sci USA, 116(18): 8728–8733
CrossRef Google scholar
[103]
Zwart J A, Sebestyen S D, Solomon C T, Jones S E (2017). The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events.Ecosystems, 20(5): 1000–1014
CrossRef Google scholar

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 42077415); the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0202); the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100102); the 111 Project (BP0618001).

Supplementary Materials

are available in the online version of this article at https://doi.org/10.1007/s11707-022-1047-5 and are accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
审图号:GS京(2024)1246号
AI Summary AI Mindmap
PDF(6891 KB)

Accesses

Citations

Detail

Sections
Recommended

/