First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance
Liyan GUO, Liang XIAO, Ya LI, Xiangchuan LI, Qin LENG, Nan SUN, Junfeng GUO, Chaofeng FU, Jianan WANG, Deshuang JI
First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance
Mosses form a diverse land plant group in modern vegetation but have rarely showed up in the fossil record compared with vascular plants. Here, we report an extraordinarily-preserved early Miocene moss fossil from the lower Laoliangdi Formation in the Pingzhuang Coal Mine in Chifeng, Inner Mongolia Autonomous Region, northern China. Although lacking rhizoids and most reproductive organs, the well-preserved fossil allows us to assign it to Platydictya cf. jungermannioides (Amblystegiaceae) based upon its detailed gross and micro-morphology. The diagnostic characteristics include a small-sized body with slender stems bearing spirally arranged ovate-lanceolate leaves that lack costae. Leaf margins are mostly partly entire and partly dentate, a few dentate, and rarely completely entire. It represents the first fossil record of Platydictya in Asia. The specific living microenvironment of the extant P. jungermannioides enriched our understanding of the early Miocene environment that was previously based upon vascular plant fossils and sedimentary lithofacies in the area. Our early Miocene Platydictya cf. jungermannioides fossil lived in a warm and humid lush forest with a dense understory that received adequate water supplies.
moss / the Pingzhuang Coal Mine / Inner Mongolia / Platydictya / paleoenvironment
[1] |
Amaral P G C, Bernardes de Oliveira M, Ricardi-Branco F, Broutin J (2004). Presencia de Bryopsida fértil en los niveles Westfalianos del subgrup Itarar, Cuenca de Paraná, Brasil.Trop Bryol, 25: 101–110
|
[2] |
Baker R G, Bettis E A III, Horton D G (1993). Late Wisconsinan–early Holocene riparian paleoenvironment insoutheastern Iowa.Geol Soc Am Bull, 105(2): 206–212
CrossRef
Google scholar
|
[3] |
Bennike O, Abrahamsen N, Bak M, Israelson C, Konradi P, Matthiessen J, Witkowski A (2002). A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland.Palaeogeogr Palaeoclimatol Palaeoecol, 186(1–2): 1–23
CrossRef
Google scholar
|
[4] |
Bittmann F (2007). Reconstruction of the Allerod vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900cal B.P.Veg Hist Archaeobot, 16(2–3): 139–156
CrossRef
Google scholar
|
[5] |
Blöcher R, Frahm J P (2002). A comparison of the moss floras of Chile and New Zealand.Trop Bryol, 21: 81–92
|
[6] |
Bomfleur B, Klymiuk A A, Taylor E L, Taylor T N, Gulbranson E L, Isbell J L (2014). Diverse bryophyte mesofossils from the Triassic of Antarctica.Lethaia, 47(1): 120–132
CrossRef
Google scholar
|
[7] |
CrumH A, Anderson L E (1981). Mosses of Eastern North America.II. New York: Columbia University Press, 916–1105
|
[8] |
Delgadillo C (2009). Floristic corridors for moss distribution across the Neovolcanic Belt of Mexico, IV, The Toluca and Chalco corridors.J Bryol, 31(1): 30–40
CrossRef
Google scholar
|
[9] |
Elverland E, Vorren K D (2008). 7500 yr of mire-pool development and the history of Pinus sylvestris (L.) in Sub Arctic coastal Norway.Rev Palaeobot Palynol, 150(1–4): 48–58
CrossRef
Google scholar
|
[10] |
Frahm J P, Newton A E (2005). A new contribution to the moss flora of dominican amber.Bryologist, 108(4): 526–536
CrossRef
Google scholar
|
[11] |
Frahm J P (2004). A new contribution to the moss flora of Baltic and Saxon amber.Rev Palaeobot Palynol, 129(1–2): 81–101
CrossRef
Google scholar
|
[12] |
Goetcheus V G, Birks H H (2001). Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska.Quat Sci Rev, 20(1–3): 135–147
CrossRef
Google scholar
|
[13] |
GoffinetB, ShawA J (2009). Bryophyte Biology. Second Edition. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press
|
[14] |
Guo C Q, Yao J X, Wu P C, Li C S (2013). Early Miocene mosses from Weichang, North China, and their environmental significance.Acta Geol Sin (English Edition), 87(6): 1508–1519
CrossRef
Google scholar
|
[15] |
GuoC Q, LiY, WuP C, Yao J X (2016). Phytogeographic significance of early Miocene mosses from Weichang, Hebei province. Geological Bulletin of China, 35(12): 1976–1984 (in Chinese)
|
[16] |
Harris S J (2008). Traditional uses and folk classification of Bryophytes.Bryologist, 111(2): 169–217
CrossRef
Google scholar
|
[17] |
HuR L, WangY F (1994). Bryography of China (VII). Beijing: Science Press, 18–21
|
[18] |
Huttunen S, Ignatov M S, Quandt D, Hedenäs L (2013). Phylogenetic position and delimitation of the moss family Plagiotheciaceae in the order Hypnales.Botanical Journal of the Linnean Society, 117(2): 330–353
CrossRef
Google scholar
|
[19] |
Ignatov M S, Maslova E V (2021). Fossil mosses: what do they tell us about moss evolution?.Bryophyt Divers Evol, 43(1): 72–97
CrossRef
Google scholar
|
[20] |
Janssens J A, Zander R H (1980). Leptodontium flexifolium and Pseudocrossidium revolutum as 60000-year-old subfossils from the Yukon Territory, Canada.Bryologist, 83(4): 486–496
CrossRef
Google scholar
|
[21] |
Janssens J A (1983). Past and present record of Drepanocladus crassicostatus sp. nov. (Musci: Amblystegiaceae) and the status of D. trichophyllus in North America.Bryologist, 86(1): 44–53
CrossRef
Google scholar
|
[22] |
Janssens J A, Glaser P H (1986). The bryophyte flora and major peat-forming mosses at Red Lake peatland, Minnesota.Can J Bot, 64(2): 427–442
CrossRef
Google scholar
|
[23] |
Kanda H (1976). A revision of the family Amblystegiaceae of Japan. II. J Sci Hiroshima U, Series B, Div.2 (Botany), 16: 47–119
|
[24] |
Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010). Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden.J Paleolimnol, 44(1): 327–342
CrossRef
Google scholar
|
[25] |
Kuder T, Kruge M A (1998). Preservation of biomolecules in sub-fossil plants from raised peat bogs—a potential paleoenvironmental proxy.Org Geochem, 29(5–7): 1355–1368
CrossRef
Google scholar
|
[26] |
Van der Linden M, Barke J, Vickery E, Charman D J, Van Geel B (2008). Late Holocene human impact and climate change recorded in a North Swedish peat deposit.Palaeogeogr Palaeoclimatol Palaeoecol, 258(1–2): 1–27
CrossRef
Google scholar
|
[27] |
Matthews J V Jr, Ovenden L E (1990). Late Tertiary plant macrofossils from localities inarctic/subarctic North America: a review of the data.Arctic, 43(4): 384–392
CrossRef
Google scholar
|
[28] |
Miller N G (1980a). Quaternary fossil bryophytes in North America: catalog and annotated bibliography.J Hattori Bot Lab, 47: 1–34
|
[29] |
Miller N G (1980b). Mosses as paleoecological indicators of lateglacial terrestrial environments: some North American studies.Bull Torrey Bot Club, 107(3): 373–391
CrossRef
Google scholar
|
[30] |
MillerN G (1984). Tertiary and Quaternary fossils. In: Schuster R M, ed. New Manual of Bryology, Nichinan, Japan: The Hattori Botanical Laboratory, 2: 1194–1232
|
[31] |
Moisan P, Voigt S, Schneider J W, Kerp H (2012). New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan).Rev Palaeobot Palynol, 187: 29–37
CrossRef
Google scholar
|
[32] |
NewtonA E, Wikstrom N, BellN, ForrestL L, Ignatov M S (2007). Dating the diversification of the pleurocarpous mosses. In: Newton A E, Tangney R S, eds. Pleurocarpous Mosses: Systematics and Evolution. Boca Raton: CRC Press, 337–366
|
[33] |
NoguchiA (1991a). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 4: 886–1012
|
[34] |
NoguchiA (1991b). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 5: 1013–1069
|
[35] |
OostendorpC (1987). The Bryophytes of the Palaeozoic and the Mesozoic. In: BryophytorumBiblotheca, Band 34. Berlin & Stuttgart: J. Cramer, 112
|
[36] |
Ovenden L (1993). Late Tertiary mosses of Ellesmere Island.Rev Palaeobot Palynol, 79(1–2): 121–131
CrossRef
Google scholar
|
[37] |
Övestedal D O, Aarseth I (1975). Bryophytes from Late Weichselian sedimentsat Vinnes, western Norway.Lindbergia, 3: 61–68
|
[38] |
Reyes A V, Jensen B J L, Zazula G D, Ager T A, Kuzmina S, La Farge C L, Froese D G (2010). A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska.Quat Sci Rev, 29(5–6): 801–811
CrossRef
Google scholar
|
[39] |
RichardZ (2017). Flora of North America, Vol. 28. London: Oxford University Press, 263–282
|
[40] |
Satake K, Oyagi A, Iwao Y (1995). Natural acidification of lakes and rivers in Japan: the ecosystem of Lake Usoriko (pH 3.4–3.8).Water Air Soil Pollut, 85: 511–516
CrossRef
Google scholar
|
[41] |
ShangP, JinJ H, SunD J, Mu J (2001). Early Miocene flora from Pingzhuang Basin of Inner Mongolia and its paleoenvironment. J Sun Yat-sen U (Nat Mater Sci Ed), 40(5): 108–112 (in Chinese)
|
[42] |
Shelton G W K, Stockey R A, Rothwell G W, Tomescu A M F (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada.Am J Bot, 102(11): 1883–1900
CrossRef
Pubmed
Google scholar
|
[43] |
Tao J R, Yang J J, Wang Y F (1994). Miocene wood fossils and paleoclimate significance in Inner Mongolia.Acta Botanica Yunnanica, 16(2): 111–116
|
[44] |
Thompson W B, Griggs C B, Miller N G, Nelson R E, Weddle T K, Kilian T M (2011). Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages.Quat Res, 75(3): 552–565
CrossRef
Google scholar
|
[45] |
VittD H (1984). Classification of the Bryopsida. In: Schuster R M, ed. New Manual of Bryology, 696–759
|
[46] |
WuY H, GaoC, CaoT (2005). Family Amblystegiaceae. In: Hu R L, Wang Y F, eds. Flora Bryophytorum Sinicorum. Vol. 7. Hypnobryales. Beijing: Science Press, 1–81
|
[47] |
YanJ F, WangY L, TanQ Y, Yu Q (2008). Sequence stratigraphy and coal accumulation in Pingzhuang Basin, Inner Mongolia. Coal Geology & Exploration, 36(1): 9–13 (in Chinese)
|
[48] |
Yang R D, Mao J R, Zhang W H, Jiang L J, Gao H (2004). Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China.Acta Bot Sin, 46(2): 180–185
|
[49] |
YuL L, ChenL Y, GuoZ F and Ma Y J (2009). Coal-bearing property assessment and coal looking prediction in mine area periphery and deep part, Pingzhuang Coalfield. Coal Geology of China, 21(4): 20–22, 34 (in Chinese)
|
[50] |
Zazula G D, Froese D G, Elias S A, Kuzmina S, La Farge C L, Reyes A V, Sanborn R T, Schweger C E, Scott Smith C A, Mathewes R W (2006). Vegetation buried under Dawson tephra (25300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon., Canada.Palaeogeogr Palaeoclimatol Palaeoecol, 242(3–4): 253–286
CrossRef
Google scholar
|
[51] |
ZhangM L (2008). Studies on Taxonomy and Flora of Amblystegiaceae (Musci) in Inner Mongolia, China. Dissertation for Master’s Degree. Hohhot: Inner Mongolia University
|
[52] |
ZhangZ C (1986). Tertiary fossil plants from Pingzhuang of Ju’ Ud league, Nei Mongol. Bulletin of Shenyang Institute Geology and Mineral Resources, Chinese Academy Geol Sci, 14: 117–124 (in Chinese)
|
/
〈 | 〉 |