First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance

Liyan GUO , Liang XIAO , Ya LI , Xiangchuan LI , Qin LENG , Nan SUN , Junfeng GUO , Chaofeng FU , Jianan WANG , Deshuang JI

Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (1) : 351 -360.

PDF (3015KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (1) : 351 -360. DOI: 10.1007/s11707-022-1037-7
RESEARCH ARTICLE
RESEARCH ARTICLE

First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance

Author information +
History +
PDF (3015KB)

Abstract

Mosses form a diverse land plant group in modern vegetation but have rarely showed up in the fossil record compared with vascular plants. Here, we report an extraordinarily-preserved early Miocene moss fossil from the lower Laoliangdi Formation in the Pingzhuang Coal Mine in Chifeng, Inner Mongolia Autonomous Region, northern China. Although lacking rhizoids and most reproductive organs, the well-preserved fossil allows us to assign it to Platydictya cf. jungermannioides (Amblystegiaceae) based upon its detailed gross and micro-morphology. The diagnostic characteristics include a small-sized body with slender stems bearing spirally arranged ovate-lanceolate leaves that lack costae. Leaf margins are mostly partly entire and partly dentate, a few dentate, and rarely completely entire. It represents the first fossil record of Platydictya in Asia. The specific living microenvironment of the extant P. jungermannioides enriched our understanding of the early Miocene environment that was previously based upon vascular plant fossils and sedimentary lithofacies in the area. Our early Miocene Platydictya cf. jungermannioides fossil lived in a warm and humid lush forest with a dense understory that received adequate water supplies.

Graphical abstract

Keywords

moss / the Pingzhuang Coal Mine / Inner Mongolia / Platydictya / paleoenvironment

Cite this article

Download citation ▾
Liyan GUO, Liang XIAO, Ya LI, Xiangchuan LI, Qin LENG, Nan SUN, Junfeng GUO, Chaofeng FU, Jianan WANG, Deshuang JI. First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance. Front. Earth Sci., 2023, 17(1): 351-360 DOI:10.1007/s11707-022-1037-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amaral P G C, Bernardes de Oliveira M, Ricardi-Branco F, Broutin J (2004). Presencia de Bryopsida fértil en los niveles Westfalianos del subgrup Itarar, Cuenca de Paraná Brasil.Trop Bryol, 25: 101–110

[2]

Baker R G, Bettis E A III, Horton D G (1993). Late Wisconsinan–early Holocene riparian paleoenvironment insoutheastern Iowa.Geol Soc Am Bull, 105(2): 206–212

[3]

Bennike O, Abrahamsen N, Bak M, Israelson C, Konradi P, Matthiessen J, Witkowski A (2002). A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland.Palaeogeogr Palaeoclimatol Palaeoecol, 186(1–2): 1–23

[4]

Bittmann F (2007). Reconstruction of the Allerod vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900cal B.P.Veg Hist Archaeobot, 16(2–3): 139–156

[5]

Blöcher R, Frahm J P (2002). A comparison of the moss floras of Chile and New Zealand.Trop Bryol, 21: 81–92

[6]

Bomfleur B, Klymiuk A A, Taylor E L, Taylor T N, Gulbranson E L, Isbell J L (2014). Diverse bryophyte mesofossils from the Triassic of Antarctica.Lethaia, 47(1): 120–132

[7]

CrumH A, Anderson L E (1981). Mosses of Eastern North America.II. New York: Columbia University Press, 916–1105

[8]

Delgadillo C (2009). Floristic corridors for moss distribution across the Neovolcanic Belt of Mexico, IV, The Toluca and Chalco corridors.J Bryol, 31(1): 30–40

[9]

Elverland E, Vorren K D (2008). 7500 yr of mire-pool development and the history of Pinus sylvestris (L.) in Sub Arctic coastal Norway.Rev Palaeobot Palynol, 150(1–4): 48–58

[10]

Frahm J P, Newton A E (2005). A new contribution to the moss flora of dominican amber.Bryologist, 108(4): 526–536

[11]

Frahm J P (2004). A new contribution to the moss flora of Baltic and Saxon amber.Rev Palaeobot Palynol, 129(1–2): 81–101

[12]

Goetcheus V G, Birks H H (2001). Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska.Quat Sci Rev, 20(1–3): 135–147

[13]

GoffinetB, ShawA J (2009). Bryophyte Biology. Second Edition. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press

[14]

Guo C Q, Yao J X, Wu P C, Li C S (2013). Early Miocene mosses from Weichang, North China, and their environmental significance.Acta Geol Sin (English Edition), 87(6): 1508–1519

[15]

GuoC Q, LiY, WuP C, Yao J X (2016). Phytogeographic significance of early Miocene mosses from Weichang, Hebei province. Geological Bulletin of China, 35(12): 1976–1984 (in Chinese)

[16]

Harris S J (2008). Traditional uses and folk classification of Bryophytes.Bryologist, 111(2): 169–217

[17]

HuR L, WangY F (1994). Bryography of China (VII). Beijing: Science Press, 18–21

[18]

Huttunen S, Ignatov M S, Quandt D, Hedenäs L (2013). Phylogenetic position and delimitation of the moss family Plagiotheciaceae in the order Hypnales.Botanical Journal of the Linnean Society, 117(2): 330–353

[19]

Ignatov M S, Maslova E V (2021). Fossil mosses: what do they tell us about moss evolution?.Bryophyt Divers Evol, 43(1): 72–97

[20]

Janssens J A, Zander R H (1980). Leptodontium flexifolium and Pseudocrossidium revolutum as 60000-year-old subfossils from the Yukon Territory, Canada.Bryologist, 83(4): 486–496

[21]

Janssens J A (1983). Past and present record of Drepanocladus crassicostatus sp. nov. (Musci: Amblystegiaceae) and the status of D. trichophyllus in North America.Bryologist, 86(1): 44–53

[22]

Janssens J A, Glaser P H (1986). The bryophyte flora and major peat-forming mosses at Red Lake peatland, Minnesota.Can J Bot, 64(2): 427–442

[23]

Kanda H (1976). A revision of the family Amblystegiaceae of Japan. II. J Sci Hiroshima U, Series B, Div.2 (Botany), 16: 47–119

[24]

Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010). Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden.J Paleolimnol, 44(1): 327–342

[25]

Kuder T, Kruge M A (1998). Preservation of biomolecules in sub-fossil plants from raised peat bogs—a potential paleoenvironmental proxy.Org Geochem, 29(5–7): 1355–1368

[26]

Van der Linden M, Barke J, Vickery E, Charman D J, Van Geel B (2008). Late Holocene human impact and climate change recorded in a North Swedish peat deposit.Palaeogeogr Palaeoclimatol Palaeoecol, 258(1–2): 1–27

[27]

Matthews J V Jr, Ovenden L E (1990). Late Tertiary plant macrofossils from localities inarctic/subarctic North America: a review of the data.Arctic, 43(4): 384–392

[28]

Miller N G (1980a). Quaternary fossil bryophytes in North America: catalog and annotated bibliography.J Hattori Bot Lab, 47: 1–34

[29]

Miller N G (1980b). Mosses as paleoecological indicators of lateglacial terrestrial environments: some North American studies.Bull Torrey Bot Club, 107(3): 373–391

[30]

MillerN G (1984). Tertiary and Quaternary fossils. In: Schuster R M, ed. New Manual of Bryology, Nichinan, Japan: The Hattori Botanical Laboratory, 2: 1194–1232

[31]

Moisan P, Voigt S, Schneider J W, Kerp H (2012). New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan).Rev Palaeobot Palynol, 187: 29–37

[32]

NewtonA E, Wikstrom N, BellN, ForrestL L, Ignatov M S (2007). Dating the diversification of the pleurocarpous mosses. In: Newton A E, Tangney R S, eds. Pleurocarpous Mosses: Systematics and Evolution. Boca Raton: CRC Press, 337–366

[33]

NoguchiA (1991a). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 4: 886–1012

[34]

NoguchiA (1991b). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 5: 1013–1069

[35]

OostendorpC (1987). The Bryophytes of the Palaeozoic and the Mesozoic. In: BryophytorumBiblotheca, Band 34. Berlin & Stuttgart: J. Cramer, 112

[36]

Ovenden L (1993). Late Tertiary mosses of Ellesmere Island.Rev Palaeobot Palynol, 79(1–2): 121–131

[37]

Övestedal D O, Aarseth I (1975). Bryophytes from Late Weichselian sedimentsat Vinnes, western Norway.Lindbergia, 3: 61–68

[38]

Reyes A V, Jensen B J L, Zazula G D, Ager T A, Kuzmina S, La Farge C L, Froese D G (2010). A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska.Quat Sci Rev, 29(5–6): 801–811

[39]

RichardZ (2017). Flora of North America, Vol. 28. London: Oxford University Press, 263–282

[40]

Satake K, Oyagi A, Iwao Y (1995). Natural acidification of lakes and rivers in Japan: the ecosystem of Lake Usoriko (pH 3.4–3.8).Water Air Soil Pollut, 85: 511–516

[41]

ShangP, JinJ H, SunD J, Mu J (2001). Early Miocene flora from Pingzhuang Basin of Inner Mongolia and its paleoenvironment. J Sun Yat-sen U (Nat Mater Sci Ed), 40(5): 108–112 (in Chinese)

[42]

Shelton G W K, Stockey R A, Rothwell G W, Tomescu A M F (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada.Am J Bot, 102(11): 1883–1900

[43]

Tao J R, Yang J J, Wang Y F (1994). Miocene wood fossils and paleoclimate significance in Inner Mongolia.Acta Botanica Yunnanica, 16(2): 111–116

[44]

Thompson W B, Griggs C B, Miller N G, Nelson R E, Weddle T K, Kilian T M (2011). Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages.Quat Res, 75(3): 552–565

[45]

VittD H (1984). Classification of the Bryopsida. In: Schuster R M, ed. New Manual of Bryology, 696–759

[46]

WuY H, GaoC, CaoT (2005). Family Amblystegiaceae. In: Hu R L, Wang Y F, eds. Flora Bryophytorum Sinicorum. Vol. 7. Hypnobryales. Beijing: Science Press, 1–81

[47]

YanJ F, WangY L, TanQ Y, Yu Q (2008). Sequence stratigraphy and coal accumulation in Pingzhuang Basin, Inner Mongolia. Coal Geology & Exploration, 36(1): 9–13 (in Chinese)

[48]

Yang R D, Mao J R, Zhang W H, Jiang L J, Gao H (2004). Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China.Acta Bot Sin, 46(2): 180–185

[49]

YuL L, ChenL Y, GuoZ F and Ma Y J (2009). Coal-bearing property assessment and coal looking prediction in mine area periphery and deep part, Pingzhuang Coalfield. Coal Geology of China, 21(4): 20–22, 34 (in Chinese)

[50]

Zazula G D, Froese D G, Elias S A, Kuzmina S, La Farge C L, Reyes A V, Sanborn R T, Schweger C E, Scott Smith C A, Mathewes R W (2006). Vegetation buried under Dawson tephra (25300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon., Canada.Palaeogeogr Palaeoclimatol Palaeoecol, 242(3–4): 253–286

[51]

ZhangM L (2008). Studies on Taxonomy and Flora of Amblystegiaceae (Musci) in Inner Mongolia, China. Dissertation for Master’s Degree. Hohhot: Inner Mongolia University

[52]

ZhangZ C (1986). Tertiary fossil plants from Pingzhuang of Ju’ Ud league, Nei Mongol. Bulletin of Shenyang Institute Geology and Mineral Resources, Chinese Academy Geol Sci, 14: 117–124 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3015KB)

857

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/