Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval

Chao WANG, Zhiyuan LI, Xiong XU, Xiangsui ZENG, Jia LI, Huan XIE, Yanmin JIN, Xiaohua TONG

PDF(5338 KB)
PDF(5338 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 378-390. DOI: 10.1007/s11707-022-1023-0
RESEARCH ARTICLE

Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval

Author information +
History +

Abstract

The Large Field of View Airborne Infrared Scanner is a newly developed multi-spectral instrument that collects images from the near-infrared to long-wave infrared channels. Its data can be used for land surface temperature (LST) retrieval and environmental monitoring. Before data application, quality assessment is an essential procedure for a new instrument. In this paper, based on the data collected by the scanner near the Yellow River in Henan Province, the geometric and radiometric qualities of the images are first evaluated. The absolute geolocation accuracy of the ten bands of the scanner is approximately 5.1 m. The ground sampling distance is found to be varied with the whisk angles of the scanner and the spatial resolution of the images. The band-to-band registration accuracy between band one and the other nine bands is approximately 0.25 m. The length and angle deformations of the ten bands are approximately 0.67% and 0.3°, respectively. The signal-to-noise ratio (SNR) and relative radiometric calibration accuracy of bands 4, 9, and 10 are relatively better than those of the other bands. Secondly, the radiative transfer equation (RTE) method is used to retrieve the LST from the data of the scanner. Measurements of in situ samples are collected to evaluate the retrieved LST. Neglecting the samples with unreasonable retrieved LST, the bias and RMSE between in situ LST measured by CE312 radiometer and retrieved LST are −0.22 K and 0.94 K, and the bias and RMSE are 0.27 K and 1.59 K for the InfReC R500-D thermal imager, respectively. Overall, the images of the Large Field of View Airborne Infrared Scanner yield a relatively satisfactory accuracy for both LST retrieval and geometric and radiometric qualities.

Graphical abstract

Keywords

Large Field of View Airborne Infrared Scanner / quality assessment / thermal infrared remote sensing / land surface temperature retrieval

Cite this article

Download citation ▾
Chao WANG, Zhiyuan LI, Xiong XU, Xiangsui ZENG, Jia LI, Huan XIE, Yanmin JIN, Xiaohua TONG. Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval. Front. Earth Sci., 2023, 17(2): 378‒390 https://doi.org/10.1007/s11707-022-1023-0

References

[1]
Anderson G P, Berk A, Acharya P K, Matthew M W, Bernstein L S, Chetwynd J H, Dothe H, Adler-Golden S M, Ratkowski A J, Felde G W, Gardner J A, Hoke M L, Richtsmeier S C, Pukall B, Mello J B, Jeong L S (2000). MODTRAN4: radiative transfer modeling for remote sensing. In: Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI.Washington: SPIE, 176–183
[2]
Bouali M, Ladjal S (2011). Toward optimal destriping of MODIS data using a unidirectional variational model.IEEE Trans Geosci Remote Sens, 49(8): 2924–2935
CrossRef Google scholar
[3]
Carter A, Ramsey M (2010). Long-term volcanic activity at shiveluch volcano: nine years of ASTER spaceborne thermal infrared observations.Remote Sens (Basel), 2(11): 2571–2583
CrossRef Google scholar
[4]
Choi Y Y, Suh M S (2018). Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm.Remote Sens (Basel), 10(12): 2013
CrossRef Google scholar
[5]
Coll C, Caselles V, Sobrino J A, Valor E (1994). On the atmospheric dependence of the split-window equation for land-surface temperature.Int J Remote Sens, 15(1): 105–122
CrossRef Google scholar
[6]
Coolbaugh M, Kratt C, Fallacaro A, Calvin W, Taranik J (2007). Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA.Remote Sens Environ, 106(3): 350–359
CrossRef Google scholar
[7]
Dash P, Göttsche F M, Olesen F S, Fischer H (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends.Int J Remote Sens, 23(13): 2563–2594
CrossRef Google scholar
[8]
Duan S B, Li Z L, Li H, Göttsche F M, Wu H, Zhao W, Leng P, Zhang X, Coll C (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements.Remote Sens Environ, 225: 16–29
CrossRef Google scholar
[9]
Eleftheriou D, Kiachidis K, Kalmintzis G, Kalea A, Bantasis C, Koumadoraki P, Spathara M E, Tsolaki A, Tzampazidou M I, Gemitzi A (2018). Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece - climate change implications.Sci Total Environ, 616-617: 937–947
CrossRef Pubmed Google scholar
[10]
Feng Z, Song L, Duan J, He L, Zhang Y, Wei Y, Feng W (2022). Monitoring Wheat Powdery Mildew Based on Hyperspectral, Thermal Infrared, and RGB Image Data Fusion.Sensors (Basel), 22(1): 31
CrossRef Pubmed Google scholar
[11]
Fischler M A, Bolles R C (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography.Commun ACM, 24(6): 381–395
CrossRef Google scholar
[12]
Freitas S C, Trigo I F, Bioucas-Dias J M, Gottsche F M (2010). Quantifying the uncertainty of land surface temperature retrievals From SEVIRI/Meteosat.IEEE Trans Geosci Remote Sens, 48(1): 523–534
CrossRef Google scholar
[13]
Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S, Kahle A B (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images.IEEE Trans Geosci Remote Sens, 36(4): 1113–1126
CrossRef Google scholar
[14]
Guo J, Ren H, Zheng Y, Lu S, Dong J (2020). Evaluation of land surface temperature retrieval from Landsat 8/TIRS images before and after stray light correction using the SURFRAD dataset.Remote Sens (Basel), 12(6): 1023
CrossRef Google scholar
[15]
Herb W R, Janke B, Mohseni O, Stefan H G (2008). Ground surface temperature simulation for different land covers. J Hydrol (Amst), 356(3–4): 327–343
CrossRef Google scholar
[16]
Hoffmann L, Günther G, Li D, Stein O, Wu X, Griessbach S, Heng Y, Konopka P, Müller R, Vogel B, Wright J S (2019). From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations.Atmos Chem Phys, 19(5): 3097–3124
CrossRef Google scholar
[17]
Hu Y, Zhang Y (2007). Analysis of relative radiometric calibration accuracy of space camera. Spacecraft Recovery & Remote Sensing, 28(4): 54–57 (in Chinese)
[18]
Jia H, Yang D, Deng W, Wei Q, Jiang W (2021). Predicting land surface temperature with geographically weighed regression and deep learning. Wiley Interdiscip Rev Data Min Knowl Discov, 11(1)
CrossRef Google scholar
[19]
Jiménez-Muñoz J C, Sobrino J A (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data.J Geophys Res, 108(D22): 2003JD003480
CrossRef Google scholar
[20]
Kabir S, Leigh L, Helder D (2020). Vicarious methodologies to assess and improve the quality of the optical remote sensing images: a critical review.Remote Sens (Basel), 12(24): 4029
CrossRef Google scholar
[21]
Karnieli A, Agam N, Pinker R T, Anderson M, Imhoff M L, Gutman G G, Panov N, Goldberg A (2010). Use of NDVI and land surface temperature for drought assessment: merits and limitations.J Clim, 23(3): 618–633
CrossRef Google scholar
[22]
Lemus-Canovas M, Martin-Vide J, Moreno-Garcia M C, Lopez-Bustins J A (2020). Estimating Barcelona’s metropolitan daytime hot and cold poles using Landsat-8 land surface temperature.Sci Total Environ, 699: 134307
CrossRef Pubmed Google scholar
[23]
Li C, Tian S, Li S, Yin M (2016). Temperature and emissivity separation via sparse representation with thermal airborne hyperspectral imager data.J Appl Remote Sens, 10(4): 042003
CrossRef Google scholar
[24]
Li Z, Tang B, Wu H, Ren H, Yan G, Wan Z, Trigo I F, Sobrino J A (2013). Satellite-derived land surface temperature: current status and perspectives.Remote Sens Environ, 131: 14–37
CrossRef Google scholar
[25]
Liu D, Pu R (2008). Downscaling thermal infrared radiance for subpixel land surface temperature retrieval.Sensors (Basel), 8(4): 2695–2706
CrossRef Pubmed Google scholar
[26]
Lowe D G (1999). Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra: IEEE, 1150–1157
[27]
Mao K, Li S, Wang D, Zhang L, Wang X, Tang H, Li Z (2011). Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network.Int J Remote Sens, 32(19): 5413–5423
CrossRef Google scholar
[28]
Nie J, Ren H, Zheng Y, Ghent D, Tansey K (2021). Land surface temperature and emissivity retrieval from nighttime middle-infrared and thermal-infrared Sentinel-3 images.IEEE Geosci Remote Sens Lett, 18(5): 915–919
CrossRef Google scholar
[29]
Parida B R, Bar S, Roberts G, Mandal S P, Pandey A C, Kumar M, Dash J (2021). Improvement in air quality and its impact on land surface temperature in major urban areas across India during the first lockdown of the pandemic.Environ Res, 199: 111280
CrossRef Pubmed Google scholar
[30]
Price J C (1983). Estimating surface temperatures from satellite thermal infrared data—a simple formulation for the atmospheric effect.Remote Sens Environ, 13(4): 353–361
CrossRef Google scholar
[31]
Qian Y, Zhao E, Gao C, Wang N, Ma L (2015). Land surface temperature retrieval using nighttime mid-infrared channels data from airborne hyperspectral scanner.IEEE J Sel Top Appl Earth Obs Remote Sens, 8(3): 1208–1216
CrossRef Google scholar
[32]
Qin Z, Karnieli A, Berliner P (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region.Int J Remote Sens, 22(18): 3719–3746
CrossRef Google scholar
[33]
Quattrochi D A, Luvall J C (1999). Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications.Landsc Ecol, 14(6): 577–598
CrossRef Google scholar
[34]
Ren H, Ye X, Nie J, Meng J, Fan W, Qin Q, Liang Y, Liu H (2022). Retrieval of land surface temperature, emissivity, and atmospheric parameters from hyperspectral thermal infrared image using a feature-band linear-format hybrid algorithm.IEEE Trans Geosci Remote Sens, 60: 1–15
CrossRef Google scholar
[35]
Sobrino J A, Jiménez-Muñoz J C, El-Kharraz J, Gómez M, Romaguera M, Sòria G (2004). Single-channel and two-channel methods for land surface temperature retrieval from dais data and its application to the barrax site.Int J Remote Sens, 25(1): 215–230
CrossRef Google scholar
[36]
Sobrino J A, Jiménez-Muñoz J C, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P (2008). Land surface emissivity retrieval from different VNIR and TIR sensors.IEEE Trans Geosci Remote Sens, 46(2): 316–327
CrossRef Google scholar
[37]
Urban M, Eberle J, Hüttich C, Schmullius C, Herold M (2013). Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-arctic scale.Remote Sens (Basel), 5(5): 2348–2367
CrossRef Google scholar
[38]
Wan Z (2008). New refinements and validation of the MODIS Land-Surface temperature/emissivity products.Remote Sens Environ, 112(1): 59–74
CrossRef Google scholar
[39]
Wan Z, Li Z (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data.IEEE Trans Geosci Remote Sens, 35(4): 980–996
CrossRef Google scholar
[40]
Wang Z, Wu X, Qian H, Yu F, Iacovazzi R, Shao X, Kondratovich V, Yoo H (2018). Radiometric Quality Assessment of GOES-16 ABI L1b Images. In: Earth Observing Systems XXIII. California: SPIE
[41]
Weng Q, Fu P, Gao F (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data.Remote Sens Environ, 145: 55–67
CrossRef Google scholar
[42]
Yamamoto Y, Ishikawa H (2018). Thermal land surface emissivity for retrieving land surface temperature from Himawari-8.J Meteorol Soc Jpn, 96B(0): 43–58
CrossRef Google scholar
[43]
Yang S, Zhang D, Sun L, Wang Y, Gao Y (2020). Assessing drought conditions in cloudy regions using reconstructed land surface temperature.J Meteorol Res, 34(2): 264–279
CrossRef Google scholar
[44]
Ye S, Jiang W, Li J, Liu X (2017). Imaging simulation and error analysis of large field of view airborne infrared scanner. Infrared Laser Eng, 46(4): 134–139 (in Chinese)
[45]
Zarei A, Shah-Hosseini R, Ranjbar S, Hasanlou M (2021). Validation of non-linear split window algorithm for land surface temperature estimation using Sentinel-3 satellite imagery: case study; Tehran Province, Iran.Adv Space Res, 67(12): 3979–3993
CrossRef Google scholar
[46]
Zhang R, Tian J, Su H, Sun X, Chen S, Xia J (2008). Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval.Sensors (Basel), 8(10): 6165–6187
CrossRef Pubmed Google scholar
[47]
Zhu L, Zhou J, Liu S, Li M, Li G (2016). Comparison of diurnal temperature cycle model and polynomial regression technique in temporal normalization of airborne land surface temperature. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing: IEEE, 4309–4312

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42171363, 41804166, and 41971299), High-Resolution Earth Observation Major Special Aviation Observation System (No. 30-H30C01-9004-19/21), the Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100); and the Shanghai Municipal Commission of Science and Technology Project (No. 19511132101). The authors would like to thank the Aerospace Information Research Institute, Chinese Academy of Sciences, for providing the images acquired by the Large Field of View Airborne Infrared Scanner; Peking University for providing part of the in situ measurement; and ECMWF for providing the ERA5 data.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5338 KB)

Accesses

Citations

Detail

Sections
Recommended

/