
Characterization of natural fractures in deep-marine shales: a case study of the Wufeng and Longmaxi shale in the Luzhou Block Sichuan Basin, China
Shasha SUN, Saipeng HUANG, Enrique GOMEZ-RIVAS, Albert GRIERA, Βο LIU, Lulu XU, Yaru WEN, Dazhong DONG, Zhensheng SHI, Yan CHANG, Yin XING
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (1) : 337-350.
Characterization of natural fractures in deep-marine shales: a case study of the Wufeng and Longmaxi shale in the Luzhou Block Sichuan Basin, China
Natural fractures are of crucial importance for oil and gas reservoirs, especially for those with ultralow permeability and porosity. The deep-marine shale gas reservoirs of the Wufeng and Longmaxi Formations are typical targets for the study of natural fracture characteristics. Detailed descriptions of full-diameter shale drill core, together with 3D Computed Tomography scans and Formation MicroScanner Image data acquisition, were carried out to characterize microfracture morphology in order to obtain the key parameters of natural fractures in such system. The fracture type, orientation, and their macroscopic and microscopic distribution features are evaluated. The results show that the natural fracture density appears to remarkably decrease in the Wufeng and Longmaxi Formations with increasing the burial depth. Similar trends have been observed for fracture length and aperture. Moreover, the natural fracture density diminishes as the formation thickness increases. There are three main types of natural fractures, which we interpret as (I) mineral-filled fractures (by pyrite and calcite), i.e., veins, (II) those induced by tectonic stress, and (III) those formed by other processes (including diagenetic shrinkage and fluid overpressure). Natural fracture orientations estimated from the studied natural fractures in the Luzhou block are not consistent with the present-day stress field. The difference in tortuosity between horizontally and vertically oriented fractures reveals their morphological complexity. In addition, natural fracture density, host rock formation thickness, average total organic carbon and effective porosity are found to be important factors for evaluating shale gas reservoirs. The study also reveals that the high density of natural fractures is decisive to evaluate the shale gas potential. The results may have significant implications for evaluating favorable exploration areas of shale gas reservoirs and can be applied to optimize hydraulic fracturing for permeability enhancement.
marine shale / natural fracture / filled fracture / tortuosity
[1] |
Abouelresh M O, Babalola L O (2020). 2D spatial analysis of the natural fractures in the organic-rich Qusaiba Shale outcrop, NW Saudi Arabia.J Petrol Sci Eng, 186: 106780
CrossRef
Google scholar
|
[2] |
Belfield W C (1994). Multifractal characteristics of natural fracture apertures.Geophys Res Lett, 21(24): 2641–2644
CrossRef
Google scholar
|
[3] |
Bons P D, Elburg M A, Gomez-Rivas E (2012). A review of the formation of tectonic veins and their microstructures.J Struct Geol, 43: 33–62
CrossRef
Google scholar
|
[4] |
Brudy M, Zoback M D (1999). Drilling-induced tensile wall-fractures: implications for determination of in-situ stress orientation and magnitude.Int J Rock Mech Min Sci, 36(2): 191–215
CrossRef
Google scholar
|
[5] |
Cai J C, Zhang Z E, Wei W, Guo D M, Li S, Zhao P Q (2019). The critical factors for permeability-formation factor relation in reservoir rocks: pore-throat ratio, tortuosity and connectivity.Energy, 188: 116051
CrossRef
Google scholar
|
[6] |
Chen S B, Zhu Y M, Qin Y, Wang H Y, Liu H L, Fang J H (2014). Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China.Mar Pet Geol, 57: 619–630
CrossRef
Google scholar
|
[7] |
Chen S B, Zhu Y M, Wang H Y, Liu H L, Wei W, Fang J H (2011). Shale gas reservoir characterisation: a typical case in the southern Sichuan Basin of China.Energy, 36(11): 6609–6616
CrossRef
Google scholar
|
[8] |
CookA M, MyerL R, CookN G W, Doyle F M (1990). The effects of tortuosity on flow through a natural fracture. In: Rock Mechanics Contributions and Challenges: Proceedings of the 31st U S Symposium. New York: CRC Press
|
[9] |
Cruset D, Vergés J, Benedicto A, Gomez-Rivas E, Cantarero I, John C M, Travé A (2021). Multiple fluid flow events from salt-related rifting to basin inversion (Upper Pedraforca thrust sheet, SE Pyrenees).Basin Res, 33(6): 3102–3136
CrossRef
Google scholar
|
[10] |
Curtis J B (2002). Fractured shale-gas systems.AAPG Bull, 86(11): 1921–1938
|
[11] |
Ding W L, Li C, Li C Y, Xu C C, Jiu K, Zeng W T, Wu L M (2012). Fracture development in shale and its relationship to gas accumulation.Geosci Front, 3(1): 97–105
CrossRef
Google scholar
|
[12] |
FallA, Eichhubl P, LaubachS E, BodnarR J (2012). Timing and duration of gas charge-driven fracturing in tight-gas sandstone reservoirs based on fluid inclusion observations: Piceance Basin, Colorado. In: AGU Fall Meeting
|
[13] |
Feng Q Q, Qiu N S, Borjigin T, Wu H, Zhang J T, Shen B J, Wang J S (2022). Tectonic evolution revealed by thermo-kinematic and its effect on shale gas preservation.Energy, 240: 122781
CrossRef
Google scholar
|
[14] |
Fan J M, Qu X F, Wang C, Lei Q, Cheng L, Yang Z (2016). Natural fracture distribution and a new method predicting effective fractures in tight oil reservoirs of Ordos Basin, NW China.Pet Explor Dev, 43(5): 806–814
CrossRef
Google scholar
|
[15] |
FossenH (2010). Structural Geology. London: Cambridge University Press
|
[16] |
GaleJ F W, HolderJ (2010). Natural fractures in some US Shales and their importance for gas production. In: Petroleum Geology Conference series. London: Geological Society: 1131–1140
|
[17] |
Gale J F W, Laubach S E, Olson J E, Eichhubl P, Fall A (2014). Natural fractures in shale: a review and new observations.AAPG Bull, 98(11): 2165–2216
CrossRef
Google scholar
|
[18] |
Gale J F W, Reed R M, Holder J (2007). Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments.AAPG Bull, 91(4): 603–622
CrossRef
Google scholar
|
[19] |
Gasparrini M, Sassi W, Gale J F W (2014). Natural sealed fractures in mudrocks: a case study tied to burial history from the Barnett Shale, Fort Worth Basin, Texas, USA.Mar Pet Geol, 55: 122–141
CrossRef
Google scholar
|
[20] |
Geng Y, Liang W, Liu J, Cao M, Kang Z (2017). Evolution of pore and fracture structure of oil shale under high temperature and high pressure.Energy Fuels, 31(10): 10404–10413
CrossRef
Google scholar
|
[21] |
Heidbach O, Rajabi M, Cui X F, Fuchs K, Müller B, Reinecker J, Reiter K, Tingay M, Wenzel F, Xie F R, Ziegler M O, Zoback M L, Zoback M (2018). The World Stress Map database release 2016: Crustal stress pattern across scales.Tectonophysics, 744: 484–498
CrossRef
Google scholar
|
[22] |
HeidbachO, RajabiM, ReiterK, Ziegler M (2016a). World Stress Map 2016, GFZ Data Services
|
[23] |
HeidbachO, RajabiM, ReiterK, Ziegler M (2016b). World Stress Map Database Release 2016. GFZ Data Services
|
[24] |
Hill D G, Nelson C R (2000). Gas productive fractured shales: an overview and update.Gas TIPS, 6(2): 4–13
|
[25] |
Huang S P, Liu D M, Cai Y D, Gan Q (2019). In situ stress distribution and its impact on CBM reservoir properties in the Zhengzhuang area, Southern Qinshui Basin, North China.J Nat Gas Sci Eng, 61: 83–96
CrossRef
Google scholar
|
[26] |
Huy P Q, Sasaki K, Sugai Y, Ichikawa S (2010). Carbon dioxide gas permeability of coal core samples and estimation of fracture aperture width.Int J Coal Geol, 83(1): 1–10
CrossRef
Google scholar
|
[27] |
KimT H (2007). Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models. Dissertation for the doctoral Degree. College Station: Texas A&M University
|
[28] |
Lakirouhani A, Detournay E, Bunger A P (2016). A reassessment of in-situ stress determination by hydraulic fracturing.Geophys J Int, 205(3): 1859–1873
CrossRef
Google scholar
|
[29] |
Laubach S E (2003). Practical approaches to identifying sealed and open fractures.AAPG Bull, 87(4): 561–579
CrossRef
Google scholar
|
[30] |
Laubach S E, Olson J E, Gale J F W (2004). Are open fractures necessarily aligned with maximum horizontal stress?.Earth Planet Sci Lett, 222(1): 191–195
CrossRef
Google scholar
|
[31] |
Liu H L, Zhang J H, Ji Y B, Li X B (2022). The controlling effect of kerogen type of shale on asphaltene nanopore and its exploration significance.Unconventional oil Gas, 9(3): 1–10
|
[32] |
Liu H, Sang S, Xue J, Wang G, Xu H, Ren B, Liu C, Liu S (2016). Characteristics of an in-situ stress field and its control on coal fractures and coal permeability in the Gucheng block, southern Qinshui Basin, China.J Nat Gas Sci Eng, 36: 1130–1139
CrossRef
Google scholar
|
[33] |
Mlella M, Surpless B, Beasley C, Stewart M K, Yazbeck L, De La Rocha L (2014). The effects of weathering on outcrop-based fracture characterization: a case study from the Stillwell Anticline, West Texas.GSA Abstracts with Programs, 46(1): 12
|
[34] |
MullenM J, Pitcher J L, HinzD, EvertsM, DunbarD, CarlstromG M, BrenizeG R (2010). Does the presence of natural fractures have an impact on production? A case study from the middle Bakken Dolomite, North Dakota. In: Society of Petroleum Engineers
|
[35] |
Nie H K, He Z L, Wang R Y, Zhang G R, Chen Q, Li D H, Lu Z Y, Sun C X (2020). Temperature and origin of fluid inclusions in shale veins of Wufeng–Longmaxi Formations, Sichuan Basin, south China: implications for shale gas preservation and enrichment.J Petrol Sci Eng, 193: 107329
CrossRef
Google scholar
|
[36] |
Olson J E, Laubach S E, Lander R H (2007). Combining diagenesis and mechanics to quantity fracture aperture distributions and fracture pattern permeability.Spec Publ Geol Soc Lond, 270(1): 101–116
CrossRef
Google scholar
|
[37] |
Paul S, Chatterjee R (2011a). Mapping of cleats and fractures as an indicator of in-situ stress orientation, Jharia Coalfield, India.Int J Coal Geol, 88(2–3): 113–122
CrossRef
Google scholar
|
[38] |
Paul S, Chatterjee R (2011b). Determination of in-situ stress direction from cleat orientation mapping for coal bed methane exploration in south-eastern part of Jharia coalfield, India.Int J Coal Geol, 87(2): 87–96
CrossRef
Google scholar
|
[39] |
PommerL, GaleJ F W, EichhublP, Fall A, LaubachS E (2012). Using structural diagenesis to infer the timing of natural fractures in the Marcellus shale. In: Unconventional Resources Technology Conference
|
[40] |
Qiu Z, Liu B, Dong D, Lu B, Yawar Z, Chen Z, Schieber J (2020). Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for reservoir properties and paleoproductivity.Mar Pet Geol, 121: 104594
CrossRef
Google scholar
|
[41] |
Ranjith P G, Wanniarachchi W, Perera M, Rathnaweera T D (2018). Investigation of the effect of foam flow rate on foam-based hydraulic fracturing of shale reservoir rocks with natural fractures: an experimental study.J Petrol Sci Eng, 169: 518–531
CrossRef
Google scholar
|
[42] |
Sang S, Liu W, Shen Z, Ma T (2019). A method for extracting 3d fracture geometries and acquiring their mechanical properties from CT scanning images.J Porous Media, 22(10): 1305–1320
CrossRef
Google scholar
|
[43] |
Sun X L, Gomez-Rivas E, Alcalde J, Martín-Martín J D, Ma C F, Muñoz-López D, Cruset D, Cantarero I, Griera A, Travé A (2021). Fracture distribution in a folded fluvial succession: the Puig-reig anticline (south-eastern Pyrenees).Mar Pet Geol, 132: 105169
CrossRef
Google scholar
|
[44] |
Tabatabaei M, Dahi Taleghani A, Hooker J N (2021). Debonding of cemented natural fractures during core recovery.J Struct Geol, 144: 104272
CrossRef
Google scholar
|
[45] |
Tsang Y W (1984). The effect of tortuosity on fluid flow through a single fracture.Water Resour Res, 20(9): 1209–1215
CrossRef
Google scholar
|
[46] |
Walton I, Mclennan J (2013). The role in natural fractures in shale gas production. In: Bunger A P, Mclennan J, Jeffrey R, eds. Effective and Sustainable Hydraulic Fracturing.Intech Open, 327–356
|
[47] |
Wang R, Pavlin T, Rosen M S, Mair R W, Cory D G, Walsworth R L (2005). Xenon NMR measurements of permeability and tortuosity in reservoir rocks.Magn Reson Imaging, 23(2): 329–331
CrossRef
Pubmed
Google scholar
|
[48] |
Wang Y, Li C H, Hu Y Z, Mao T Q (2017). Laboratory investigation of hydraulic fracture propagation using real-time ultrasonic measurement in shale formations with random natural fractures.Environ Earth Sci, 76(22): 768
CrossRef
Google scholar
|
[49] |
Zeeb C, Gomez-Rivas E, Bons P D, Blum P (2013). Evaluation of sampling methods for fracture network characterization using outcrops.AAPG Bull, 97(9): 1545–1566
CrossRef
Google scholar
|
[50] |
Zeng L B, Lyu W Y, Li J, Zhu L F, Weng J Q, Yue F, Zu K W (2016). Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China.J Nat Gas Sci Eng, 30: 1–9
CrossRef
Google scholar
|
[51] |
Zhang Y S, Zhang J C, Yuan B, Yin S X (2018). In-situ stresses controlling hydraulic fracture propagation and fracture breakdown pressure.J Petrol Sci Eng, 164: 164–173
CrossRef
Google scholar
|
[52] |
Zhang Y Y, He Z L, Jiang S, Lu S F, Xiao D S, Chen G H, Li Y C (2019). Fracture types in the lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze.Mar Pet Geol, 99: 282–291
CrossRef
Google scholar
|
[53] |
Zhao C J, Li J, Liu G H, Zhang X (2020a). Analysis of well stress with the effect of natural fracture nearby wellbore during hydraulic fracturing in shale gas wells.J Petrol Sci Eng, 188: 106885
CrossRef
Google scholar
|
[54] |
Zhao G, Ding W L, Sun Y X, Wang X H, Tian L, Liu J S, Shi S Y, Jiao B C, Cui L (2020b). Fracture development characteristics and controlling factors for reservoirs in the Lower Silurian Longmaxi formation marine shale of the Sangzhi Block, Hunan Province, China.J Petrol Sci Eng, 184: 106470
CrossRef
Google scholar
|
[55] |
Zheng S Q, Xie X F, Luo L Y, Jing Y, Tang M, Yang R F, Zhong G R, Wang J, Chen Z Y (2019). Fast and efficient drilling technologies for deep shale gas horizontal wells in the Sichuan Basin: a case study of Well Lu 203.Nat Gas Ind, 39(7): 88–93
|
[56] |
Zhu W L, Wong T F (1996). Permeability reduction in a dilating rock: network modeling of damage and tortuosity.Geophys Res Lett, 23(22): 3099–3102
CrossRef
Google scholar
|
[57] |
Zou C N, Dong D Z, Wang S J, Li J Z, Li X J, Wang Y M, Li D H, Cheng K M (2010). Geological characteristics and resource potential of shale gas in China.Pet Explor Dev, 37(6): 641–653
CrossRef
Google scholar
|
/
〈 |
|
〉 |