Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China

Tingwei ZHANG, Xiaoqiang YANG, Jian YIN, Qiong CHEN, Jianfang HU, Lu WANG, Mengshan JU, Qiangqiang WANG

PDF(6567 KB)
PDF(6567 KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (2) : 324-335. DOI: 10.1007/s11707-022-1009-y
RESEARCH ARTICLE

Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China

Author information +
History +

Abstract

The variations in precipitation have displayed a complex pattern in different regions since the mid-to-late-Holocene. Cloud formation processes may have a significant impact on precipitation, especially during the tropical marine processes and summer monsoon which convey abundant water vapor to coastal southern China and inland areas. Here, we use two 7500 year sedimentary records from the Pearl River Delta and the closed Maar Lake, respectively, in coastal southern China to reconstruct the mid-to-late-Holocene humidity variability and explore its possible relationship with cloud cover modulated by the Earth’s magnetic fields (EMF). Our proxy records document an apparent increase in wetness in coastal southern China between 3.0 and 1.8 kyr BP. This apparent increase in humidity appears to be consistent with the lower virtual axial dipole moments and, in turn, with a lower EMF. This correlation suggests that the EMF might have been superimposed on the weakened monsoon to regulate the mid-to-late-Holocene hydroclimate in coastal southern China through the medium of galactic cosmic rays, aerosols, and cloud cover. However, further investigations are needed to verify this interaction.

Graphical abstract

Keywords

hydroclimate variations / Earth’s magnetic field / coastal southern China / the Holocene epoch

Cite this article

Download citation ▾
Tingwei ZHANG, Xiaoqiang YANG, Jian YIN, Qiong CHEN, Jianfang HU, Lu WANG, Mengshan JU, Qiangqiang WANG. Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China. Front. Earth Sci., 2024, 18(2): 324‒335 https://doi.org/10.1007/s11707-022-1009-y

References

[1]
Abrajevitch A, Kodama K (2011). Diagenetic sensitivity of paleoenvironmental proxies: a rock magnetic study of Australian continental margin sediments.Geochem Geophys Geosyst, 12(5): Q05Z24
CrossRef Google scholar
[2]
Blaauw M, Christen J (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal, 6(3): 457–474
CrossRef Google scholar
[3]
Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation.Earth Planet Sci Lett, 291(1–4): 21–31
CrossRef Google scholar
[4]
Campuzano S A, De Santis A, Pavón-Carrasco F J, Osete M L, Qamili E (2018). New perspectives in the study of the Earth’s magnetic field and climate connection: the use of transfer entropy.PLoS One, 13(11): e0207270
CrossRef Google scholar
[5]
Carslaw K S, Harrison R G, Kirkby J (2002). Cosmic rays, clouds, and climate.Science, 298(5599): 1732–1737
CrossRef Google scholar
[6]
Channell J E T, Vigliotti L (2019). The role of geomagnetic field intensity in Late Quaternary evolution of humans and large mammals.Rev Geophys, 57(3): 709–738
CrossRef Google scholar
[7]
Constable C, Korte M, Panovska S (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years.Earth Planet Sci Lett, 453: 78–86
CrossRef Google scholar
[8]
Conroy J L, Overpeck J T, Cole J E, Shanahan T M, Steinitz-Kannan M (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record.Quat Sci Rev, 27(11–12): 1166–1180
CrossRef Google scholar
[9]
Cooper A, Turney C S M, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey A M, Heaton T J, Russell J M, McCracken K, Anet J G, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith J T, Fenwick P, Fogwill C J, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R (2021). A global environmental crisis 42000 years ago.Science, 371(6531): 811–818
CrossRef Google scholar
[10]
Courtillot V, Gallet Y, Le Mouël J L, Fluteau F, Genevey A (2007). Are there connections between the Earth’s magnetic field and climate?.Earth Planet Sci Lett, 253(3–4): 328–339
CrossRef Google scholar
[11]
Dergachev V A, Dmitriev P B, Raspopov O M, Jungner H (2007). Cosmic ray flux variations, modulated by the solar and terrestrial magnetic fields, and climate changes. Part 2: the time interval from ∼10000 to ∼100000 years ago.Geomagn Aeron, 47(1): 109–117
CrossRef Google scholar
[12]
Duan Z, Liu Q, Yang X, Gao X, Su Y (2014). Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications.Palaeogeogr Palaeoclimatol Palaeoecol, 395: 158–167
CrossRef Google scholar
[13]
Gallet Y, Genevey A, Fluteau F (2005). Does Earth’s magnetic field secular variation control centennial climate change?.Earth Planet Sci Lett, 236(1–2): 339–347
CrossRef Google scholar
[14]
Hao Z, Zheng J, Zhang X, Liu H, Li M, Ge Q (2016). Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years.Int J Climatol, 36(1): 467–475
CrossRef Google scholar
[15]
Harris I, Osborn T J, Jones P, Lister D (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset.Sci Data, 7(1): 109
CrossRef Google scholar
[16]
Harrison R J, Feinberg J M (2008). FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing.Geochem Geophys Geosyst, 9(5): Q05016
CrossRef Google scholar
[17]
Haug G H, Hughen K A, Sigman D M, Peterson L C, Röhl U (2001). Southward migration of the intertropical convergence zone through the Holocene.Science, 293(5533): 1304–1308
CrossRef Google scholar
[18]
Hu C, Henderson G M, Huang J, Xie S, Sun Y, Johnson K R (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records.Earth Planet Sci Lett, 266(3–4): 221–232
CrossRef Google scholar
[19]
Hyland E G, Sheldon N D, Van der Voo R, Badgley C, Abrajevitch A (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions.Geol Soc Am Bull, 127(7–8): 975–981
CrossRef Google scholar
[20]
Jalihal C, Srinivasan J, Chakraborty A (2019). Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years.Nat Commun, 10(1): 5701
CrossRef Google scholar
[21]
Ji J F, Chen J, Balsam W, Lu H Y, Sun Y B, Xu H F (2004). High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian Monsoon to the tropical Pacific.Geophys Res Lett, 31(3): L03207
CrossRef Google scholar
[22]
Jiang Y, Yang X Q, Liu X, Qian Y, Zhang K, Wang M, Li F, Wang Y, Lu Z (2020). Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks.J Clim, 33(8): 3351–3366
CrossRef Google scholar
[23]
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D (1996). The NCEP/NCAR 40-year reanalysis project.Bull Am Meteorol Soc, 77(3): 437–472
CrossRef Google scholar
[24]
Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L (2002). NCEP–DOE AMIP-II reanalysis (R-2).Bull Am Meteorol Soc, 83(11): 1631–1644
CrossRef Google scholar
[25]
Kathayat G, Cheng H, Sinha A, Spötl C, Edwards R L, Zhang H, Li X, Yi L, Ning Y, Cai Y, Lui W L, Breitenbach S F (2016). Indian monsoon variability on millennial-orbital timescales.Sci Rep, 6(1): 24374
CrossRef Google scholar
[26]
Kerton A K (2009). Climate change and the Earth’s magnetic poles, a possible connection.Energy Environ, 20(1): 75–83
CrossRef Google scholar
[27]
Kirkby J (2007). Cosmic rays and climate.Surv Geophys, 28(5–6): 333–375
CrossRef Google scholar
[28]
Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega I K, Wagner R, Adamov A, Amorim A, Bernhammer A K, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan R C, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle C R, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan A P, Pringle K, Rap A, Richards N A, Riipinen I, Rissanen M P, Rondo L, Sarnela N, Schobesberger S, Scott C E, Seinfeld J H, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel A L, Wagner A C, Wagner P E, Weingartner E, Wimmer D, Winkler P M, Ye P, Zhang X, Hansel A, Dommen J, Donahue N M, Worsnop D R, Baltensperger U, Kulmala M, Carslaw K S, Curtius J (2016). Ion-induced nucleation of pure biogenic particles.Nature, 533(7604): 521–526
CrossRef Google scholar
[29]
Knudsen M F, Riisager P (2009). Is there a link between Earth’s magnetic field and low-latitude precipitation?.Geology, 37(1): 71–74
CrossRef Google scholar
[30]
Korte M, Donadini F, Constable C G (2009). Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models.Geochem Geophys Geosyst, 10(6): Q06008
CrossRef Google scholar
[31]
Laskar J, Fienga A, Gastineau M, Manche H (2011). La2010: a new orbital solution for the long-term motion of the Earth.Astron Astrophys, 532: A89
CrossRef Google scholar
[32]
Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nat Geosci, 4(12): 888–894
CrossRef Google scholar
[33]
Liu Q, Gu Z, Liu J, You H, Lü H, Chu G, Qi X, Negendank J, Mingram J, Schettler G (2005). Bulk organic carbon isotopic record of Huguangyan maar lake, southeastern China and its paleoclimatic and paleoenvironmental significance since 62 ka BP.Marine Geol & Quater Geol, 25(2): 115–126
CrossRef Google scholar
[34]
Liu Y, Fang C, Li Q, Song H, Ta W, Zhao G, Sun C (2019). Tree-ring δ18O based PDSI reconstruction in the Mt. Tianmu region since 1618 AD and its connection to the East Asian summer monsoon.Ecol Indic, 104: 636–647
CrossRef Google scholar
[35]
Long X, Ji J, Balsam W (2011). Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements.J Geophys Res, 116(F3): F03015
CrossRef Google scholar
[36]
Luo R, Liu Y, Zhu Q, Tang Y, Shao T (2021). Effects of aerosols on cloud and precipitation in East-Asian drylands.Int J Climatol, 41(9): 4603–4618
CrossRef Google scholar
[37]
Nilsson A, Holme R, Korte M, Suttie N, Hill M (2014). Reconstructing Holocene geomagnetic field variation: new methods, models and implications.Geophys J Int, 198(1): 229–248
CrossRef Google scholar
[38]
Pierce J R (2017). Cosmic rays, aerosols, clouds, and climate: recent findings from the CLOUD experiment.J Geophys Res Atmos, 122(15): 8051–8055
CrossRef Google scholar
[39]
Pierce J R, Adams P J (2007). Efficiency of cloud condensation nuclei formation from ultrafine particles.Atmos Chem Phys, 7(5): 1367–1379
CrossRef Google scholar
[40]
Robinson S G, Sahota J T S, Oldfield F (2000). Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices.Mar Geol, 163(1–4): 77–107
CrossRef Google scholar
[41]
Robock A, Outten S (2018). Volcanoes: Role in Climate. In: Reference Module in Earth Systems and Environmental Sciences 10.1016/B978-0-12-409548-9.11423-X
[42]
Sato Y, Goto D, Michibata T, Suzuki K, Takemura T, Tomita H, Nakajima T (2018). Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.Nat Commun, 9(1): 985
CrossRef Google scholar
[43]
Scheinost A C (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils.Clays Clay Miner, 46(5): 528–536
CrossRef Google scholar
[44]
Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018). GPCC full data monthly product version 2018 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. 10.5676/DWD_GPCC/FD_M_V2018_050
[45]
Schwertmann U (1988). Occurrence and formation of iron oxides in various pedoenvironments. In: Iron in Soils and Clay Minerals (pp. 267–308). New York Springer
[46]
Southon J, Kashgarian M, Fontugne M, Metivier B, Yim W W-S (2002). Marine reservoir corrections for the Indian Ocean and Southeast Asia.Radiocarbon, 44(1): 167–180
CrossRef Google scholar
[47]
Stenchikov G (2021). The role of volcanic activity in climate and global changes. In: Letcher T M, ed. Climate Change (3rd Ed). Elsevier, 607–643
[48]
Stuiver M, Reimer P J, Reimer R W (2020). CALIB 7.1 [WWW program] Avaible at CALIB website.
[49]
Svensmark H, Enghoff M B, Shaviv N J, Svensmark J (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei.Nat Commun, 8(1): 2199
CrossRef Google scholar
[50]
Svensmark J, Enghoff M B, Shaviv N J, Svensmark H (2016). The response of clouds and aerosols to cosmic ray decreases.J Geophys Res Space Phys, 121(9): 8152–8181
CrossRef Google scholar
[51]
Tan L C, Cai Y J, Cheng H, Edwards L R, Gao Y L, Xu H, Zhang H, An Z (2018). Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years.Earth Planet Sci Let, 482: 580–590
CrossRef Google scholar
[52]
Torrent J, Barrón V (2008). Diffuse Reflectance Spectroscopy. In: Ulery A L, Richard Drees L, eds. Methods of Soil Analysis Part 5—Mineralogical Methods. Soil Sci Soc America, 367–385
[53]
Wang Q, Yang X, Anderson N J, Dong X (2016). Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China).Quat Res, 86(1): 1–12
CrossRef Google scholar
[54]
Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate.Science, 308(5723): 854–857
CrossRef Google scholar
[55]
Williamson C J, Kupc A, Axisa D, Bilsback K R, Bui T, Campuzano-Jost P, Dollner M, Froyd K D, Hodshire A L, Jimenez J L, Kodros J K, Luo G, Murphy D M, Nault B A, Ray E A, Weinzierl B, Wilson J C, Yu F, Yu P, Pierce J R, Brock C A (2019). A large source of cloud condensation nuclei from new particle formation in the tropics.Nature, 574(7778): 399–403
CrossRef Google scholar
[56]
Wu X, Zhang Z, Xu X, Shen J (2012). Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record. Palaeogeogr Palaeoclimatol Palaeoecol, 323–325(15): 13–21 10.1016/j.palaeo.2012.01.020
[57]
Xie S, Evershed R P, Huang X, Zhu Z, Pancost R D, Meyers P A, Gong L, Hu C, Huang J, Zhang S, Gu Y, Zhu J (2013). Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China.Geology, 41(8): 827–830
CrossRef Google scholar
[58]
Xu H, Goldsmith Y, Lan J, Tan L, Wang X, Zhou X, Cheng J, Lang Y, Liu C (2020). Juxtaposition of western Pacific subtropical high on Asian Summer Monsoon shapes subtropical East Asian precipitation.Geophys Res Let, 47(3): e2019GL084705
CrossRef Google scholar
[59]
Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011). A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies.Nat Geosci, 4(9): 611–614
CrossRef Google scholar
[60]
Yang X, Su Z, Yang J, Huang W (2012). Magnetic fabrics of maar lake sediments in tropical southern China record hydrodynamic process.Quater Sci, 32(4): 795–802
CrossRef Google scholar
[61]
Yang X, Wei G, Yang J, Jia G, Huang C, Xie L, Huang W, Argyrios K (2014). Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in Southern China.The Holocene, 24(10): 1216–1225
CrossRef Google scholar
[62]
Zhang E L, Zhao C, Xue B, Liu Z H, Yu Z C, Chen R, Shen J (2017). Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum.Geology, 45(5): 435–438
CrossRef Google scholar
[63]
Zhang H, Cheng H, Sinha A, Spötl C, Cai Y, Liu B, Kathayat G, Li H, Tian Y, Li Y, Zhao J, Sha L, Lu J, Meng B, Niu X, Dong X, Liang Z, Zong B, Ning Y, Lan J, Edwards R L (2021). Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change.Sci Adv, 7(48): eabi9275
CrossRef Google scholar
[64]
Zhang J, Lu H, Jia J, Shen C, Wang S, Chu G, Wang L, Cui A, Liu J, Wu N, Li F (2020a). Seasonal drought events in tropical East Asia over the last 60,000 y.Proc Natl Acad Sci USA, 117(49): 30988–30992
CrossRef Google scholar
[65]
Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record.Science, 322(5903): 940–942
CrossRef Google scholar
[66]
Zhang T, Yang X, Chen Q, Toney J L, Zhou Q, Gao H (2020b). Humidity variations spanning the ‘Little Ice Age’ from an upland lake in southwestern China.The Holocene, 30(2): 289–299
CrossRef Google scholar
[67]
Zhang W, Yan H, Liu C, Cheng P, Li J, Lu F, Ma X, Dodson J, Heijnis H, Zhou W, An Z (2018). Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age.Quater Intern, 487: 54–60
CrossRef Google scholar
[68]
Zhang Y G, Ji J F, Balsam W L, Liu L W, Chen J (2007). High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600000 years.Earth Planet Sci Let, 264(1–2): 136–150
CrossRef Google scholar
[69]
Zhu Z, Feinberg J M, Xie S, Bourne M D, Huang C, Hu C, Cheng H (2017). Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China.Proc Natl Acad Sci USA, 114(5): 852–857
CrossRef Google scholar

Acknowledgments

This research is supported by the projects of National Second Expedition to the Tibetan Plateau (No. 2019QZKK0707), Guangdong Province Introduced Innovative R&D Team of Geological Processes and Natural Disasters around the South China Sea (No. 2016ZT06N331), the projects of National Natural Science Foundation of China (Grant Nos. 41872217, 41672162, and 41904068) and the Natural Science Foundation of Guangdong Province (No. 2018B030311064).

Supplementary material

is available in the online version of this article at https://doi.org/10.1007/s11707-022-1009-y and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6567 KB)

Accesses

Citations

Detail

Sections
Recommended

/