Change of probability density distributions of summer temperatures in different climate zones

Xinqiu OUYANG , Weilin LIAO , Ming LUO

Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (1) : 1 -16.

PDF (6325KB)
Front. Earth Sci. ›› 2024, Vol. 18 ›› Issue (1) : 1 -16. DOI: 10.1007/s11707-022-1006-1
RESEARCH ARTICLE

Change of probability density distributions of summer temperatures in different climate zones

Author information +
History +
PDF (6325KB)

Abstract

Extreme events have become increasingly frequent worldwide which are reflected in diverse changes in the shape of the temperature probability density function. However, few studies have paid attention to the heterogeneity of temperature at the scale of climate zones. Here, we use the ERA5-land data set to explore interdecadal summer temperature changes and the distribution across different climate zones from 1981 to 2019. Comparing the minimum (Tmin) and maximum (Tmax) temperature of 1982–1991 and 2010–2019, the results imply that Tmin and Tmax in summer maintained a notable upward trend over the past 40 years, especially Tmin. The effects of a simple shift toward a warmer climate contributed most to all climate zones, while the standard deviation, skewness and kurtosis had minor effects on extreme temperature except for tropics. Quantile analysis shows that the probability of extreme events in all climate zones is increasing in frequency and intensity, especially Tmin and Tmax in temperate climate zone. Understanding diverse reasons for climate change can assist us with taking different measures to address extreme climate in distinct climate zones.

Graphical abstract

Keywords

Climate change / probability density function / extreme events

Cite this article

Download citation ▾
Xinqiu OUYANG, Weilin LIAO, Ming LUO. Change of probability density distributions of summer temperatures in different climate zones. Front. Earth Sci., 2024, 18(1): 1-16 DOI:10.1007/s11707-022-1006-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson G B, Bell M L (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.Environ Health Perspect, 119(2): 210–218

[2]

AndersonG B, OlesonK W, JonesB, Peng R D (2018). Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves. Clim Change, 146(3–4): 439–453

[3]

Araújo C S P, Silva I A C E, Ippolito M, Almeida C D G C (2022). Evaluation of air temperature estimated by ERA5-Land reanalysis using surface data in Pernambuco, Brazil.Environ Monit Assess, 194(5): 381

[4]

Beck H E, Zimmermann N E, McVicar T R, Vergopolan N, Berg A, Wood E F (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution.Sci Data, 5(1): 180214

[5]

CarvalhoD, Cardoso Pereira S, RochaA (2021). Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data. Clim Change, 167(1–2): 10

[6]

Chan D, Wu Q (2015). Significant anthropogenic-induced changes of climate classes since 1950.Sci Rep, 5(1): 13487

[7]

Conover W J, Johnson M E, Johnson M M (1981). A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data.Technometrics, 23: 351–361

[8]

Davy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S (2017). Diurnal asymmetry to the observed global warming.Int J Climatol, 37(1): 79–93

[9]

Della-Marta P M, Haylock M R, Luterbacher J, Wanner H (2007). Doubled length of western European summer heat waves since 1880.J Geophys Res, 112(D15): D15103

[10]

Dergunov A V, Yakubailik O E (2020). Comparative analysis of data on air temperature based on current weather data sets for 2007–2019.IOP Conf Ser Earth Environ Sci, 548(3): 032034

[11]

Donat M G, Alexander L V (2012). The shifting probability distribution of global daytime and night-time temperatures.Geophys Res Lett, 39(14): L14707

[12]

GaoT, ZhangQ, LuoM (2020). Intensifying effects of El Niño events on winter precipitation extremes in southeastern china. Clim Dyn, 54(1–2): 631–648

[13]

Gil-Alana L A, Monge M (2020). Global CO2 emissions and global temperatures: are they related.Int J Climatol, 40(15): 6603–6611

[14]

Grotjahn R, Black R, Leung R, Wehner M F, Barlow M, Bosilovich M, Gershunov A Jr, Gutowski W J Jr, Gyakum J R, Katz R W, Lee Y Y, Lim Y K, Prabhat (2016). North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends.Clim Dyn, 46: 1151–1184

[15]

GuirguisK, Gershunov A, CayanD R, PierceD W (2018). Heat wave probability in the changing climate of the southwest us. Clim Dyn, 50(9–10): 3853–3864

[16]

HamedK H, Ramachandra Rao A (1998). A modified Mann-Kendall trend test for autocorrelated data. J Hydrol (Amst), 204(1–4): 182–196

[17]

Hansen J, Sato M, Ruedy R (2012). Perception of climate change.Proc Natl Acad Sci USA, 109(37): E2415–E2423

[18]

Hu T, Sun Y (2021). Anthropogenic influence on extreme temperatures in China based on CMIP6 models.Int J Climatol, 5(42): 2981–2995

[19]

Huang J, Yu H, Guan X, Wang G, Guo R (2016a). Accelerated dryland expansion under climate change.Nat Clim Chang, 6(2): 166–171

[20]

Huang K, Zhang Y, Zhu J, Liu Y, Zu J, Zhang J (2016b). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet plateau.Remote Sens (Basel), 8(10): 876

[21]

Huang P, Xie S, Hu K, Huang G, Huang R (2013). Patterns of the seasonal response of tropical rainfall to global warming.Nat Geosci, 6(5): 357–361

[22]

Huang X, Han S, Shi C (2021). Multiscale assessments of three reanalysis temperature data systems over china.Agriculture, 11(12): 1292

[23]

Huntingford C, Jones P D, Livina V N, Lenton T M, Cox P M (2013). No increase in global temperature variability despite changing regional patterns.Nature, 500(7462): 327–330

[24]

IPCC (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. SPM: 1–20

[25]

Jarque C M, Bera A K (1987). A test for normality of observations and regression residuals.Int Stat Rev, 55(2): 163–172

[26]

Johnson N C, Xie S P, Kosaka Y, Li X (2018). Increasing occurrence of cold and warm extremes during the recent global warming slowdown.Nat Commun, 9(1): 1724

[27]

Katz R, Brown B (1992). Extreme events in a changing climate: variability is more important than averages.Clim Change, 21(3): 289–302

[28]

King A D, Karoly D J, Henley B J (2017). Australian climate extremes at 1.5°C and 2°C of global warming.Nat Clim Chang, 7(6): 412–416

[29]

KnutsonT R, Ploshay J J (2016). Detection of anthropogenic influence on a summertime heat stress index. Clim Change, 138(1–2): 25–39

[30]

Li D, Liao W, Rigden A J, Liu X, Wang D, Malyshev S, Shevliakova E (2019). Urban heat island: aerodynamics or imperviousness?.Sci Adv, 5(4): eaau4299

[31]

Liao W, Liu X, Li D, Luo M, Wang D, Wang S, Baldwin J, Lin L, Li X, Feng K, Hubacek K, Yang X (2018). Stronger contributions of urbanization to heat wave trends in wet climates.Geophys Res Lett, 45(20): L79679

[32]

Linz M, Chen G, Zhang B, Zhang P (2020). A framework for understanding how dynamics shape temperature distributions.Geophys Res Lett, 47(4): e2019GL085684

[33]

Liu J, Hagan D F T, Liu Y (2020). Global land surface temperature change (2003–2017) and its relationship with climate drivers: airs, MODIS, and ERA5-Land based analysis.Remote Sens (Basel), 13(1): 44

[34]

Luo M, Lau N C (2021). Increasing human‐perceived heat stress risks exacerbated by urbanization in China: a comparative study based on multiple metrics.Earth’s Future, 9(7): e2020EF001848

[35]

Luo M, Lau N C, Liu Z, Wu S, Wang X (2022). An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective.Geophysical Research Letters, 49(6): e2022GL097714

[36]

Luo M, Lau N (2020). Summer heat extremes in northern continents linked to developing ENSO events.Environ Res Lett, 15(7): 074042

[37]

Luo M, Ning G, Xu F, Wang S, Liu Z, Yang Y (2020). Observed heatwave changes in arid northwest China: physical mechanism and long-term trend.Atmos Res, 242(9): 105009

[38]

Ma F, Yuan X, Jiao Y, Ji P (2020). Unprecedented Europe heat in June–July 2019: risk in the historical and future context.Geophys Res Lett, 47(11): 1–10

[39]

Mann H (1945). Nonparametric test against trend.Econometrica, 13(3): 245

[40]

Masson-Delmotte V, Zhai P, Pirani A, Connors S L , Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B (2021). IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

[41]

McKinnon K A, Deser C (2018). Internal variability and regional climate trends in an observational large ensemble.J Clim, 31(17): 6783–6802

[42]

McKinnon K A, Rhines A, Tingley M P, Huybers P (2016). The changing shape of northern hemisphere summer temperature distributions.J Geophys Res Atmos, 121(15): 8849–8868

[43]

Mitchell D, Heaviside C, Vardoulakis S, Huntingford C, Masato G, P Guillod B, Frumhoff P, Bowery A, Wallom D, Allen M. (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change.Environ Res Lett, 7(7): 074006

[44]

Miralles D G, Teuling A J, van Heerwaarden C C, Vilà-Guerau De Arellano J (2014). Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation.Nat Geosci, 7(5): 345–349

[45]

Ogunjo S, Ife-Adediran O, Owoola E, Fuwape I (2019). Quantification of historical drought conditions over different climatic zones of Nigeria.Acta Geophys, 67(3): 879–889

[46]

Qian C, Zhang X (2015). Human influences on changes in the temperature seasonality in mid- to high-latitude land areas.J Clim, 28(15): 5908–5921

[47]

Raftery A E, Zimmer A, Frierson D M W, Startz R, Liu P (2017). Less than 2°C warming by 2100 unlikely.Nat Clim Chang, 7(9): 637–641

[48]

Routson C C, McKay N P, Kaufman D S, Erb M P, Goosse H, Shuman B N, Rodysill J R, Ault T (2019). Mid-latitude net precipitation decreased with Arctic warming during the Holocene.Nature, 568(7750): 83–87

[49]

Ruff T W, Neelin J D (2012). Long tails in regional surface temperature probability distributions with implications for extremes under global warming.Geophys Res Lett, 39(4): L04704

[50]

Saleem F, Zeng X, Hina S, Omer A (2021). Regional changes in extreme temperature records over Pakistan and their relation to pacific variability.Atmos Res, 250: 105407

[51]

Schär C, Vidale P L, Thi D L, Frei C, Berli C H, Liniger M A, Appenzeller C (2004). The role of increasing temperature variability in European summer heatwaves.Nature, 427(6972): 328–332

[52]

Schneider T, Held I (2001). Discriminants of twentieth-century changes in earth surface temperatures.J Clim, 14(3): 249–254

[53]

Stott P (2016). How climate change affects extreme weather events.Science, 352(6293): 1517–1518

[54]

Screen J A (2014). Arctic amplification decreases temperature variance in northern mid-to high-latitudes.Nat Clim Chang, 4(7): 577–582

[55]

Sheridan S C, Lee C C, Smith E T (2020). A comparison between station observations and reanalysis data in the identification of extreme temperature events.Geophys Res Lett, 47(15): e2020GL88120

[56]

Simolo C, Brunetti M, Maugeri M, Nanni T, Speranza A (2010). Understanding climate change–induced variations in daily temperature distributions over Italy.J Geophys Res, 115: D22110

[57]

Sun Y, Zhang X, Zwiers F W, Song L, Wan H, Hu T, Yin H, Ren G (2014). Rapid increase in the risk of extreme summer heat in eastern China.Nat Clim Chang, 4(12): 1082–1085

[58]

Tang D, Li X, Xu X, Liu X, Zhang H, Shi H, Liu S, Zhang H (2021). Does the belt and road initiative really increase CO2 emissions?.Ann Assoc Am Geogr, 4: 1–20

[59]

Tang Q, Zhang X, Francis J A (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere.Nat Clim Chang, 4(1): 45–50

[60]

Tian H, Zhou Y, Wang Z, Huang X, Ge E, Wu S, Wang P, Tong X, Ran P, Luo M (2021). Effects of high-frequency temperature variabilities on the morbidity of chronic obstructive pulmonary disease: evidence in 21 cities of Guangdong, South China.Environ Res, 201: 111544

[61]

Tingley M P, Huybers P (2015). Heterogeneous warming of northern hemisphere surface temperatures over the last 1200 years.J Geophys Res Atmos, 120(9): 4040–4056

[62]

Tollefson J (2015). .Is the 2 °C world a fantasy? Nature, 527(7579): 436–438

[63]

Vogel M M, Zscheischler J, Wartenburger R, Dee D, Seneviratne S I (2019). Concurrent 2018 hot extremes across northern hemisphere due to human‐induced climate change.Earths Futur, 7(7): 692–703

[64]

Vose R S, Easterling D R, Gleason B (2005). Maximum and minimum temperature trends for the globe: an update through 2004.Geophysical Research Letters, 32(23): L23822

[65]

Wang X, Jiang D, Lang X (2017). Future extreme climate changes linked to global warming intensity.Sci Bull (Beijing), 62(24): 1673–1680

[66]

Wang Y, Chen L, Song Z, Huang Z, Ge E, Lin L, Luo M (2019). Human-perceived temperature changes over south China: long-term trends and urbanization effects.Atmos Res, 215: 116–127

[67]

Wu X, Jin S, Ouyang X (2020). A full-polarization GNSS-R Delay-Doppler-Map (DDM) simulator for bare soil freeze/thaw process detection.Geoscience Letters, 7(1): 4

[68]

Xue Y, Shukla J (1996). The influence of land surface properties on sahel climate. Part II. Afforestation.J Clim, 9(12): 3260–3275

[69]

Zhai P, Zhou B, Chen Y (2018). A review of climate change attribution studies.J Meteorol Res, 32(5): 671–692

[70]

Zhang M, Chen Y, Shen Y, Li B (2019). Tracking climate change in central asia through temperature and precipitation extremes.J Geogr Sci, 29(1): 3–28

[71]

Zhang Y, Held I, Fueglistaler S (2021). Projections of tropical heat stress constrained by atmospheric dynamics.Nat Geosci, 14(3): 133–137

[72]

Zhao L, Lee X, Smith R B, Oleson K (2014). Strong contributions of local background climate to urban heat islands.Nature, 511(7508): 216–219

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6325KB)

906

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/