Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

Ci SONG, Shamil MAKSYUTOV, Jiong SHU

Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 589-603.

PDF(15403 KB)
PDF(15403 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 589-603. DOI: 10.1007/s11707-022-0997-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

Author information +
History +

Abstract

We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σθ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for combination of biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10-s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0°E to 84.0°W, and 87.0°N to 67.2°S. The simulation results were compared with CO2 observations made in January and November, 2009, and March and April, 2010. The analysis attests that the model is sufficient to simulate vertical profiles with errors within 1–2 ppmv, except for the lower stratosphere in the Northern hemisphere high latitudes.

Graphical abstract

Keywords

HIPPO / CO2 / simulation / vertical profile / NIES-TM

Cite this article

Download citation ▾
Ci SONG, Shamil MAKSYUTOV, Jiong SHU. Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations. Front. Earth Sci., 2023, 17(2): 589‒603 https://doi.org/10.1007/s11707-022-0997-y

Ci SONG is a lecturer of College of Science, Zhongyuan University of Technology, she was a post-doctor of School of Communication and Information Engineering, Shanghai University from 2018 to 2021. She received her B.S. in mathematics and applied mathematics from Henan Normal University in 2008, M.S. in mathematics and applied mathematics from East China Normal University and Ph.D. in physical geography from East China Normal University. Her research interests include remote sensing information processing and application, remote sensing mechanism and radiation transmission

Shamil MAKSYUTOV is a researcher at Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan. He was a sub-leader at Japan Agency for Marine-Earth Science Technology from 2002 to 2005, a visiting researcher at National Institute for Environmental Studies from 1990 to 2000, a researcher at Department of Kinetics and Catalysis, Semenov Institute of Chemical Physics, Moscow, Russia. He had been studying in Moscow Institute of Physics and Technology from 1974 to 1983. His research interests include GHG observations and analysis and CO2 transport modeling

Jiong SHU is currently a professor of climatology at the Key Laboratory of Geographic Information Science, East China Normal University. He was an Honor Research Fellow at the University of Liverpool, UK, in 1999, after which he was employed as a Professor at the College of Resources and Environmental Science, East China Normal University in 2000. He joined the Key Laboratory of Geographical Information Science, Ministry of Education, in 2002 as the director until December 2009. His research interests include climate change and environmental remote sensing

References

[1]
Baker D F, Law R M, Gurney K R, Rayner P, Peylin P, Denning A S, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fung I Y, Heimann M, John J, Maki T, Maksyutov S, Masarie K, Prather M, Pak B, Taguchi S, Zhu Z (2006). TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes 1988–2003.Global Biogeochem Cy, 20: GB1002
[2]
Belikov D, Maksyutov S, Miyasaka T, Saeki T, Zhuravlev R, Kiryushov B (2011). Mass-conserving tracer transport modeling on a reduced latitude-longitude grid with NIES-TM.Geosci Model Dev, 4(1): 207–222
CrossRef Google scholar
[3]
Belikov D, Maksyutov S, Sherlock V, Aoki S, Deutscher N M, Dohe S, Griffith D, Kyro E, Morino I, Nakazawa T, Notholt J, Rettinger M, Schneider M, Sussmann R, Toon G C, Wennberg P O, Wunch D (2013). Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate.Atmos Chem Phys, 13(4): 1713–1732
CrossRef Google scholar
[4]
Belikov D, Sugawara S, Ishidoya S, Hasebe F, Maksyutov S, Aoki S, Morimoto S, Nakazawa T (2019). Three-dimensional simulation of stratospheric gravitational separation using NIES global atmospheric tracer transport model.Atmos Chem Phys, 19(8): 5349–5361
CrossRef Google scholar
[5]
Bleck R, Bao J W G, Benjamin S, Brown J M, Fiorino M, Henderson T B, Lee J L, MacDonald A E, Madden P, Middlecoff J, Rosinski J, Smirnova T G, Sun S, and N Wang (2015). A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: model description. Mon Wea Rev, 143: 2386–2403.
[6]
Bolin B, Keeling C D (1963). Large-scale atmospheric mixing as deduced from seasonal and meridional variations of the atmospheric carbon dioxide.J Geophys Res, 68(13): 3899–3920
CrossRef Google scholar
[7]
Bosilovich M G, Chen J, Robertson F R, and Adler R F (2008). Evaluation of global precipitation in reanalysis.J Appl Meteor Climatol, 47: 2279–2299
CrossRef Google scholar
[8]
Bregman B, Meijer E, Scheele R (2006). Key aspects of stratospheric tracer modeling using assimilated winds.Atmos Chem Phys, 6(12): 4529–4543
CrossRef Google scholar
[9]
Chen C C, Rasch P J (2012). Climate Simulations with an Isentropic Finite-Volume Dynamical Core.J Clim, 25(8): 2843–2861
CrossRef Google scholar
[10]
Dee D P, Uppala S (2009). Variational bias correction of satellite radiance data in the ERA-Interim reanalysis.Q J R Meteorol Soc, 135(644): 1830–1841
CrossRef Google scholar
[11]
Denning A S, Randall D A, Collatz G J, Sellers P J (1996). Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part II: simulated CO2 concentrations.Tellus B Chem Phys Meterol, 48(4): 543–567
CrossRef Google scholar
[12]
Denning A S, Holzer M, Gurney K R, Heimann M, Law R M, Rayner P J, Fung I Y, Fan S M, Taguchi S, Friedlingstein P, Balkanski Y, Taylor J, Maiss M, Levin I (1999). Three-dimensional transport and concentration of SF6: a model intercomparison study (TransCom2).Tellus B Chem Phys Meterol, 51(2): 266–297
CrossRef Google scholar
[13]
Douglass A R, Prather M J, Hall T M, Strahan S E, Rasch P J, Sparling L C, Coy L, Rodriguez J M (1999). Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft.J Geophys Res, 104(D22): 27545–27564
CrossRef Google scholar
[14]
GLOBALVIEW-CO2 (2013). Cooperative Atmospheric Data Integration Project–Carbon Dioxide, CD-ROM, NOAA ESRL. Boulder: Colorado
[15]
Gurney K R, Law R M, Denning A S, Rayner P J, Pak B C, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fung I Y, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, and Taguchi, S (2004). Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem Cy, 18: GB1010
[16]
Hack J J, Boville B A, Briegleb B P, Kiehl J T, Rasch P J, Williamson D L (1993). Description of the NCAR community climate model (CCM2). Ncar Technical Note
[17]
Hall T M, Waugh D W, Boering K A, Plumb R A (1999). Evaluation of transport in stratospheric models.J Geophys Res, 104(D15): 18815–18839
CrossRef Google scholar
[18]
Hein R, Crutzen P J, Heimann M (1997). An inverse modeling approach to investigate the global atmospheric methane cycle.Global Biogeochem Cycles, 11(1): 43–76
CrossRef Google scholar
[19]
IPCC (2016) Intergovernmental Panel on Climate Change. Available at IPPC website
[20]
Jacob D, Prather M J, Rasch P J, Shia R L, Balkanski Y J, Beagley S R, Bergmann D J, Blackshear W T, Brown M, Chiba M, Chipperfield M P, de Grandpr’e J, Dignon J E, Feichter J, Genthon C, Grose W L, Kasibhatla P S, Köhler I, Kritz M A, Law K, Penner J E, Ramonet M, Reeves C E, Rotman D A, Stockwell D Z, Van Velthoven P F J, Verver G, Wild O, Yang H, Zimmermann P (1997). Evaluation and intercomparison of global transport models using 222Rn and other short-lived tracers.J Geophys Res, 102(D5): 5953–5970
CrossRef Google scholar
[21]
Jöckel P, von Kuhlmann R, Lawrence M G, Steil B, Brenninkmeijer C A M, Crutzen P J, Rasch P J, Eaton B (2001). On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models.Q J R Meteorol Soc, 127(573): 1035–1052
CrossRef Google scholar
[22]
Keppel-Aleks G, Wennberg P O, Schneider T (2010). Sources of variations in total column carbon dioxide.Atmos Chem Phys, 10: 30569–30611
CrossRef Google scholar
[23]
Law R M, Peters W, Rödenbeck C, Aulagnier C, Baker I, Bergmann D J, Bousquet P, Brandt J, Bruhwiler , L , Cameron-Smith P J, Christensen J H, Delage F, Denning A S, Fan S M, Geels C, Houweling S, Imasu R, Karstens U, Kawa S R, Kleist J, Krol M, Lin S J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Patra P K, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Takigawa M, Vautard R, Vermeulen A T, and Zhu Z (2008). Trans Commodel simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002.Global Biogeochem Cy, 22: GB3009
[24]
Mahowald N M, Plumb R A, Rasch P J, del Corral J, Sassi F (2002). Stratospheric transport in a three-dimensional isentropic coordinate model.J Geophys Res, 107(D15): 4254
CrossRef Google scholar
[25]
Maksyutov S, Patra P K, Onishi R, Saeki T, Nakazawa T (2008). NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion.J Earth Simul, 9: 3–18
[26]
Maksyutov S, Takagi H, Valsala V K, Saito M, Oda T, Saeki T, Belikov D A, Saito R, Ito A, Yoshida Y, Morino L, Uchino O, Andres R J, Yokota T (2013). Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations.Atmos Chem Phys, 13(18): 9351–9373
CrossRef Google scholar
[27]
Maksyutov S, Oda T, Saito M, Janardanan R, Belikov D, Kaiser J W, Zhuravlev R, Ganshin A, Valsala V K, Andrews A, Chmura L, Dlugokencky E, Haszpra L, Langenfelds R L, Machida T, Nakazawa T, Ramonet M, Sweeney C, Worthy D (2021). Technicla note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM-FLEXPAPT coupled transport model and its adjoint.Atmos Chem Phys, 21(2): 1245–1266
CrossRef Google scholar
[28]
Monge-Sanz B M, Chipperfield M P, Simmons A J, Uppala S M (2007). Mean age of air and transport in a CTM: comparison of different ECMWF analyses.Geophys Res Lett, 34(4): L04801
CrossRef Google scholar
[29]
Niwa Y, Patra P K, Sawa Y, Machida T, Matsueda H, Belikov D, Maki T, Ikegami M, Imasu R, Maksyutov S, Oda T, Satoh M, Takigawa M (2011). Three-dimensional variations of atmospheric CO2: aircraft measurements and multi transport model simulations.Atmos Chem Phys, 11(24): 13359–13375
CrossRef Google scholar
[30]
Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007). The JRA-25 reanalysis.J Meteorol Soc Jpn, 85(3): 369–432
CrossRef Google scholar
[31]
Parker R, Boesch H, Cogan A, Fraser A, Feng L, Palmer P I, Messerschmidt J, Deutscher N, Griffith D W T, Notholt J, Wennberg P O, Wunch D (2011). Methane observations from the Greenhouse Gases Observing SATellite: comparison to ground based TCCON data and model calculations.Geophys Res Lett, 38(15): L15807
CrossRef Google scholar
[32]
Patra P K, Maksyutov S, and Transcom-3 modelers (2003a). Sensitivity of optimal extension of observation networks to model transport.Tellus, 55(2): 498–511
CrossRef Google scholar
[33]
Patra P K, Maksyutov S, Sasano Y, Nakajima H, Inoue G, and Nakazawa T (2003b). An evaluation of CO2 observations with Solar Occultation FTS for Inclined-Orbit Satellite sensor for surface source inversion.J Geophys Res, 108(D24): 4759
CrossRef Google scholar
[34]
Patra P K, Peters W, Rödenbeck C, Aulagnier C, Baker I, Bergmann D J, Bousquet P, Brandt J, Bruhwiler , L , Cameron-Smith P J, Christensen J H, Delage F, Denning A S, Fan S M, Geels C, Houweling S, Imasu R, Karstens U, Kawa S R, Kleist J, Krol M, Law R M, Lin S J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Takigawa M, Vautard R, Vermeulen A T, and Zhu Z (2008). TransCom model simulations of hourly atmospheric CO2: analysis of synoptic-scale variations for the period 2002–2003.Global Biogeochem Cy, 22: GB4013
[35]
Patra P K, Houweling S, Krol M, Bousquet P, Belikov D, Bergmann D, Bian H, Cameron-Smith P, Chipperfield M P, Corbin K, Fortems-Cheiney A, Fraser A, Gloor E, Hess P, Ito , A , Kawa S R, Law R M, Loh Z, Maksyutov S, Meng L, Palmer P I, Prinn R G, Rigby M, Saito R, Wilson C (2011). Transcom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere.Atmos Chem Phys, 11: 12813–12837
CrossRef Google scholar
[36]
Rasch P J, Boville B A, Brasseur G P (1995). A three dimensional general circulation model with coupled chemistry for the middle atmosphere.J Geophys Res, 100(D5): 9041–9071
CrossRef Google scholar
[37]
Raupach M R, Marland G, Ciais P, Le Quéré C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions.Proc Natl Acad Sci USA, 104(24): 10288–10293
CrossRef Pubmed Google scholar
[38]
Rayner P J, Enting I G, Francey R J, Langenfelds R (1999). Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations.Tellus B Chem Phys Meterol, 51(2): 213–232
CrossRef Google scholar
[39]
Rayner P J, O’Brien D M (2001). The utility of remotely sensed CO2 concentration data in surface inversion.Geophys Res Lett, 28(1): 175–178
CrossRef Google scholar
[40]
Scholes R J, Monteiro P M S, Sabine C L, Canadell J G (2009). Systematic long-term observations of the global carbon cycle.Trends Ecol Evol, 24(8): 427–430
CrossRef Pubmed Google scholar
[41]
Schoeberl M R, Douglass A R, Zhu Z, Pawson S (2003). Acomparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems.J Geophys Res, 108(D3): 4113
CrossRef Google scholar
[42]
Stohl A, Cooper O, James P (2004). A cautionary note on the use of meteorological analysis data for quantifying atmospheric mixing.J Atmos Sci, 61(12): 1446–1453
CrossRef Google scholar
[43]
Strow L L, Hannon S E (2008). A 4-year zonal climatology of lower tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations.J Geophys Res, 113(D18): D18302
CrossRef Google scholar
[44]
Tans P P, Fung I Y, Takahashi T (1990). Observational contrains on the global atmospheric CO2 budget.Science, 247(4949): 1431–1438
CrossRef Pubmed Google scholar
[45]
Thompson R L, Ishijima K, Saikawa E, Corazza M, Karstens U, Patra P K, Bergamaschi P, Chevallier F, Dlugokencky E, Prinn R G, Weiss R F, O’Doherty S, Fraser P J, Steele L P, Krummel P B, Vermeulen A, Tohjima Y, Jordan A, Haszpra L, Steinbacher M, Van der Laan S, Aalto T, Meinhardt F, Popa M E, Moncrieff J, Bousquet P (2014). TransCom N2O model inter-comparison–Part 2: atmospheric inversion estimates of N2O emissions.Atmos Chem Phys, 14(12): 6177–6194
CrossRef Google scholar
[46]
Waugh D W, Hall T M (2002). Age of stratospheric air: theory, observations, and models.Rev Geophys, 40(4): 1010
CrossRef Google scholar
[47]
Weaver C J, Douglass A R, Rood R B (1993). Thermodynamic balance of three-dimensional stratospheric winds derived from a data assimilation procedure.J Atmos Sci, 50(17): 2987–2993
CrossRef Google scholar
[48]
Wofsy S C, Daube B C, Jimenez R, Kort E, Pittman J V, Park S, Commane R, Xiang B, Santoni G, Jacob D, Fisher J, Pickett-Heaps C, Wang H, Wecht K, Wang Q Q, Stephens B B, Shertz S, Watt A S, Romashkin P, Campos T, Haggerty J, Cooper W A, Rogers D, Beaton S, Hendershot R, Elkins J W, Fahey D W, Gao R S, Moore F, Montzka S A, Schwarz J P, Perring A E, Hurs D, Miller B R, Sweeney C, Oltmans S, Nance D, Hintsa E, Dutton G, Watts L A, Spackman J R, Rosenlof K H, Ray E A, Hall B, Zondlo M A, Diao M, Keeling R, Bent J, Atlas E L, Lueb R, Mahoney M J (2012). HIPPO Merged 10-second Meteorology, Atmospheric Chemistry. Aerosol Data (R_20121129) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
[49]
Wunch D, Toon G, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V, Wennberg P O(2011). The total carbon column observing network. Philos Trans Royal Soc, Math Phys Eng Sci A, 369(1943): 2087−2112
[50]
Yang Z, Washenfelder R A, Keppel-Aleks G, Krakauer N Y, Randerson J T, Tans P P, Sweeney C, Wennberg P O (2007). New constraints on Northern Hemisphere growing season net flux.Geophys Res Lett, 34(12): L12807
CrossRef Google scholar
[51]
Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009). Global concentrations of CO2 and CH4retrieved from GOSAT: first preliminary results.Sci Online Lett Atmos, 5: 160–163
CrossRef Google scholar
[52]
Yoshida Y, Kikuchi N, Morino I, Uchino O, Oshchepkov S, Bril A, Saeki T, Schutgens N, Toon G C, Wunch D, Roehl C M, Wennberg P O, Griffith D W T, Deutscher N M, Warneke T, Notholt J, Robinson J, Sherlock V, Connor B, Rettinger M, Sussmann R, Ahonen P, Heikkinen P, Kyrö E, Mendonca J, Strong K, Hase F, Dohe S, Yokota T (2013). Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data.Atmos Meas Tech, 6(6): 1533–1547
CrossRef Google scholar

Acknowledgments

The authors acknowledge NSF, EOL of NCAR and NOAA which supported the collection of the original HIPPO data. This project was supported by the National Basic Research Program of China (No. 2010CB951603). The computation was supported by the High Performance Computer Center of East China Normal University. We thank the team members of the Biogeochemical Cycle Modeling and Analysis Section of National Institute for Environment Studies, Tsukuba, Japan for providing expert advice and assistance. The GOSAT Level 4 data made available by GOSAT project.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(15403 KB)

Accesses

Citations

Detail

Sections
Recommended

/