Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

Ci SONG , Shamil MAKSYUTOV , Jiong SHU

Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 589 -603.

PDF (15403KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 589 -603. DOI: 10.1007/s11707-022-0997-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

Author information +
History +
PDF (15403KB)

Abstract

We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σθ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for combination of biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10-s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0°E to 84.0°W, and 87.0°N to 67.2°S. The simulation results were compared with CO2 observations made in January and November, 2009, and March and April, 2010. The analysis attests that the model is sufficient to simulate vertical profiles with errors within 1–2 ppmv, except for the lower stratosphere in the Northern hemisphere high latitudes.

Graphical abstract

Keywords

HIPPO / CO2 / simulation / vertical profile / NIES-TM

Cite this article

Download citation ▾
Ci SONG, Shamil MAKSYUTOV, Jiong SHU. Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations. Front. Earth Sci., 2023, 17(2): 589-603 DOI:10.1007/s11707-022-0997-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker D F, Law R M, Gurney K R, Rayner P, Peylin P, Denning A S, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fung I Y, Heimann M, John J, Maki T, Maksyutov S, Masarie K, Prather M, Pak B, Taguchi S, Zhu Z (2006). TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes 1988–2003.Global Biogeochem Cy, 20: GB1002

[2]

Belikov D, Maksyutov S, Miyasaka T, Saeki T, Zhuravlev R, Kiryushov B (2011). Mass-conserving tracer transport modeling on a reduced latitude-longitude grid with NIES-TM.Geosci Model Dev, 4(1): 207–222

[3]

Belikov D, Maksyutov S, Sherlock V, Aoki S, Deutscher N M, Dohe S, Griffith D, Kyro E, Morino I, Nakazawa T, Notholt J, Rettinger M, Schneider M, Sussmann R, Toon G C, Wennberg P O, Wunch D (2013). Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate.Atmos Chem Phys, 13(4): 1713–1732

[4]

Belikov D, Sugawara S, Ishidoya S, Hasebe F, Maksyutov S, Aoki S, Morimoto S, Nakazawa T (2019). Three-dimensional simulation of stratospheric gravitational separation using NIES global atmospheric tracer transport model.Atmos Chem Phys, 19(8): 5349–5361

[5]

Bleck R, Bao J W G, Benjamin S, Brown J M, Fiorino M, Henderson T B, Lee J L, MacDonald A E, Madden P, Middlecoff J, Rosinski J, Smirnova T G, Sun S, and N Wang (2015). A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: model description. Mon Wea Rev, 143: 2386–2403.

[6]

Bolin B, Keeling C D (1963). Large-scale atmospheric mixing as deduced from seasonal and meridional variations of the atmospheric carbon dioxide.J Geophys Res, 68(13): 3899–3920

[7]

Bosilovich M G, Chen J, Robertson F R, and Adler R F (2008). Evaluation of global precipitation in reanalysis.J Appl Meteor Climatol, 47: 2279–2299

[8]

Bregman B, Meijer E, Scheele R (2006). Key aspects of stratospheric tracer modeling using assimilated winds.Atmos Chem Phys, 6(12): 4529–4543

[9]

Chen C C, Rasch P J (2012). Climate Simulations with an Isentropic Finite-Volume Dynamical Core.J Clim, 25(8): 2843–2861

[10]

Dee D P, Uppala S (2009). Variational bias correction of satellite radiance data in the ERA-Interim reanalysis.Q J R Meteorol Soc, 135(644): 1830–1841

[11]

Denning A S, Randall D A, Collatz G J, Sellers P J (1996). Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part II: simulated CO2 concentrations.Tellus B Chem Phys Meterol, 48(4): 543–567

[12]

Denning A S, Holzer M, Gurney K R, Heimann M, Law R M, Rayner P J, Fung I Y, Fan S M, Taguchi S, Friedlingstein P, Balkanski Y, Taylor J, Maiss M, Levin I (1999). Three-dimensional transport and concentration of SF6: a model intercomparison study (TransCom2).Tellus B Chem Phys Meterol, 51(2): 266–297

[13]

Douglass A R, Prather M J, Hall T M, Strahan S E, Rasch P J, Sparling L C, Coy L, Rodriguez J M (1999). Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft.J Geophys Res, 104(D22): 27545–27564

[14]

GLOBALVIEW-CO2 (2013). Cooperative Atmospheric Data Integration Project–Carbon Dioxide, CD-ROM, NOAA ESRL. Boulder: Colorado

[15]

Gurney K R, Law R M, Denning A S, Rayner P J, Pak B C, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fung I Y, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, and Taguchi, S (2004). Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem Cy, 18: GB1010

[16]

Hack J J, Boville B A, Briegleb B P, Kiehl J T, Rasch P J, Williamson D L (1993). Description of the NCAR community climate model (CCM2). Ncar Technical Note

[17]

Hall T M, Waugh D W, Boering K A, Plumb R A (1999). Evaluation of transport in stratospheric models.J Geophys Res, 104(D15): 18815–18839

[18]

Hein R, Crutzen P J, Heimann M (1997). An inverse modeling approach to investigate the global atmospheric methane cycle.Global Biogeochem Cycles, 11(1): 43–76

[19]

IPCC (2016) Intergovernmental Panel on Climate Change. Available at IPPC website

[20]

Jacob D, Prather M J, Rasch P J, Shia R L, Balkanski Y J, Beagley S R, Bergmann D J, Blackshear W T, Brown M, Chiba M, Chipperfield M P, de Grandpr’e J, Dignon J E, Feichter J, Genthon C, Grose W L, Kasibhatla P S, Köhler I, Kritz M A, Law K, Penner J E, Ramonet M, Reeves C E, Rotman D A, Stockwell D Z, Van Velthoven P F J, Verver G, Wild O, Yang H, Zimmermann P (1997). Evaluation and intercomparison of global transport models using 222Rn and other short-lived tracers.J Geophys Res, 102(D5): 5953–5970

[21]

Jöckel P, von Kuhlmann R, Lawrence M G, Steil B, Brenninkmeijer C A M, Crutzen P J, Rasch P J, Eaton B (2001). On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models.Q J R Meteorol Soc, 127(573): 1035–1052

[22]

Keppel-Aleks G, Wennberg P O, Schneider T (2010). Sources of variations in total column carbon dioxide.Atmos Chem Phys, 10: 30569–30611

[23]

Law R M, Peters W, Rödenbeck C, Aulagnier C, Baker I, Bergmann D J, Bousquet P, Brandt J, Bruhwiler , L , Cameron-Smith P J, Christensen J H, Delage F, Denning A S, Fan S M, Geels C, Houweling S, Imasu R, Karstens U, Kawa S R, Kleist J, Krol M, Lin S J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Patra P K, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Takigawa M, Vautard R, Vermeulen A T, and Zhu Z (2008). Trans Commodel simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002.Global Biogeochem Cy, 22: GB3009

[24]

Mahowald N M, Plumb R A, Rasch P J, del Corral J, Sassi F (2002). Stratospheric transport in a three-dimensional isentropic coordinate model.J Geophys Res, 107(D15): 4254

[25]

Maksyutov S, Patra P K, Onishi R, Saeki T, Nakazawa T (2008). NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion.J Earth Simul, 9: 3–18

[26]

Maksyutov S, Takagi H, Valsala V K, Saito M, Oda T, Saeki T, Belikov D A, Saito R, Ito A, Yoshida Y, Morino L, Uchino O, Andres R J, Yokota T (2013). Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations.Atmos Chem Phys, 13(18): 9351–9373

[27]

Maksyutov S, Oda T, Saito M, Janardanan R, Belikov D, Kaiser J W, Zhuravlev R, Ganshin A, Valsala V K, Andrews A, Chmura L, Dlugokencky E, Haszpra L, Langenfelds R L, Machida T, Nakazawa T, Ramonet M, Sweeney C, Worthy D (2021). Technicla note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM-FLEXPAPT coupled transport model and its adjoint.Atmos Chem Phys, 21(2): 1245–1266

[28]

Monge-Sanz B M, Chipperfield M P, Simmons A J, Uppala S M (2007). Mean age of air and transport in a CTM: comparison of different ECMWF analyses.Geophys Res Lett, 34(4): L04801

[29]

Niwa Y, Patra P K, Sawa Y, Machida T, Matsueda H, Belikov D, Maki T, Ikegami M, Imasu R, Maksyutov S, Oda T, Satoh M, Takigawa M (2011). Three-dimensional variations of atmospheric CO2: aircraft measurements and multi transport model simulations.Atmos Chem Phys, 11(24): 13359–13375

[30]

Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007). The JRA-25 reanalysis.J Meteorol Soc Jpn, 85(3): 369–432

[31]

Parker R, Boesch H, Cogan A, Fraser A, Feng L, Palmer P I, Messerschmidt J, Deutscher N, Griffith D W T, Notholt J, Wennberg P O, Wunch D (2011). Methane observations from the Greenhouse Gases Observing SATellite: comparison to ground based TCCON data and model calculations.Geophys Res Lett, 38(15): L15807

[32]

Patra P K, Maksyutov S, and Transcom-3 modelers (2003a). Sensitivity of optimal extension of observation networks to model transport.Tellus, 55(2): 498–511

[33]

Patra P K, Maksyutov S, Sasano Y, Nakajima H, Inoue G, and Nakazawa T (2003b). An evaluation of CO2 observations with Solar Occultation FTS for Inclined-Orbit Satellite sensor for surface source inversion.J Geophys Res, 108(D24): 4759

[34]

Patra P K, Peters W, Rödenbeck C, Aulagnier C, Baker I, Bergmann D J, Bousquet P, Brandt J, Bruhwiler , L , Cameron-Smith P J, Christensen J H, Delage F, Denning A S, Fan S M, Geels C, Houweling S, Imasu R, Karstens U, Kawa S R, Kleist J, Krol M, Law R M, Lin S J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Takigawa M, Vautard R, Vermeulen A T, and Zhu Z (2008). TransCom model simulations of hourly atmospheric CO2: analysis of synoptic-scale variations for the period 2002–2003.Global Biogeochem Cy, 22: GB4013

[35]

Patra P K, Houweling S, Krol M, Bousquet P, Belikov D, Bergmann D, Bian H, Cameron-Smith P, Chipperfield M P, Corbin K, Fortems-Cheiney A, Fraser A, Gloor E, Hess P, Ito , A , Kawa S R, Law R M, Loh Z, Maksyutov S, Meng L, Palmer P I, Prinn R G, Rigby M, Saito R, Wilson C (2011). Transcom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere.Atmos Chem Phys, 11: 12813–12837

[36]

Rasch P J, Boville B A, Brasseur G P (1995). A three dimensional general circulation model with coupled chemistry for the middle atmosphere.J Geophys Res, 100(D5): 9041–9071

[37]

Raupach M R, Marland G, Ciais P, Le Quéré C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions.Proc Natl Acad Sci USA, 104(24): 10288–10293

[38]

Rayner P J, Enting I G, Francey R J, Langenfelds R (1999). Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations.Tellus B Chem Phys Meterol, 51(2): 213–232

[39]

Rayner P J, O’Brien D M (2001). The utility of remotely sensed CO2 concentration data in surface inversion.Geophys Res Lett, 28(1): 175–178

[40]

Scholes R J, Monteiro P M S, Sabine C L, Canadell J G (2009). Systematic long-term observations of the global carbon cycle.Trends Ecol Evol, 24(8): 427–430

[41]

Schoeberl M R, Douglass A R, Zhu Z, Pawson S (2003). Acomparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems.J Geophys Res, 108(D3): 4113

[42]

Stohl A, Cooper O, James P (2004). A cautionary note on the use of meteorological analysis data for quantifying atmospheric mixing.J Atmos Sci, 61(12): 1446–1453

[43]

Strow L L, Hannon S E (2008). A 4-year zonal climatology of lower tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations.J Geophys Res, 113(D18): D18302

[44]

Tans P P, Fung I Y, Takahashi T (1990). Observational contrains on the global atmospheric CO2 budget.Science, 247(4949): 1431–1438

[45]

Thompson R L, Ishijima K, Saikawa E, Corazza M, Karstens U, Patra P K, Bergamaschi P, Chevallier F, Dlugokencky E, Prinn R G, Weiss R F, O’Doherty S, Fraser P J, Steele L P, Krummel P B, Vermeulen A, Tohjima Y, Jordan A, Haszpra L, Steinbacher M, Van der Laan S, Aalto T, Meinhardt F, Popa M E, Moncrieff J, Bousquet P (2014). TransCom N2O model inter-comparison–Part 2: atmospheric inversion estimates of N2O emissions.Atmos Chem Phys, 14(12): 6177–6194

[46]

Waugh D W, Hall T M (2002). Age of stratospheric air: theory, observations, and models.Rev Geophys, 40(4): 1010

[47]

Weaver C J, Douglass A R, Rood R B (1993). Thermodynamic balance of three-dimensional stratospheric winds derived from a data assimilation procedure.J Atmos Sci, 50(17): 2987–2993

[48]

Wofsy S C, Daube B C, Jimenez R, Kort E, Pittman J V, Park S, Commane R, Xiang B, Santoni G, Jacob D, Fisher J, Pickett-Heaps C, Wang H, Wecht K, Wang Q Q, Stephens B B, Shertz S, Watt A S, Romashkin P, Campos T, Haggerty J, Cooper W A, Rogers D, Beaton S, Hendershot R, Elkins J W, Fahey D W, Gao R S, Moore F, Montzka S A, Schwarz J P, Perring A E, Hurs D, Miller B R, Sweeney C, Oltmans S, Nance D, Hintsa E, Dutton G, Watts L A, Spackman J R, Rosenlof K H, Ray E A, Hall B, Zondlo M A, Diao M, Keeling R, Bent J, Atlas E L, Lueb R, Mahoney M J (2012). HIPPO Merged 10-second Meteorology, Atmospheric Chemistry. Aerosol Data (R_20121129) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

[49]

Wunch D, Toon G, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V, Wennberg P O(2011). The total carbon column observing network. Philos Trans Royal Soc, Math Phys Eng Sci A, 369(1943): 2087−2112

[50]

Yang Z, Washenfelder R A, Keppel-Aleks G, Krakauer N Y, Randerson J T, Tans P P, Sweeney C, Wennberg P O (2007). New constraints on Northern Hemisphere growing season net flux.Geophys Res Lett, 34(12): L12807

[51]

Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009). Global concentrations of CO2 and CH4retrieved from GOSAT: first preliminary results.Sci Online Lett Atmos, 5: 160–163

[52]

Yoshida Y, Kikuchi N, Morino I, Uchino O, Oshchepkov S, Bril A, Saeki T, Schutgens N, Toon G C, Wunch D, Roehl C M, Wennberg P O, Griffith D W T, Deutscher N M, Warneke T, Notholt J, Robinson J, Sherlock V, Connor B, Rettinger M, Sussmann R, Ahonen P, Heikkinen P, Kyrö E, Mendonca J, Strong K, Hase F, Dohe S, Yokota T (2013). Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data.Atmos Meas Tech, 6(6): 1533–1547

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (15403KB)

603

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/