Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China

Jinqi QIAO, Qingyong LUO, Chen ZHANG, Zhenxue JIANG

PDF(12965 KB)
PDF(12965 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (2) : 437-454. DOI: 10.1007/s11707-022-0996-z
RESEARCH ARTICLE

Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China

Author information +
History +

Abstract

Trace elements and rare earth elements (REEs) of two kinds of organic facies samples representing marginal and more basin-center deposits from Pleistocene lacustrine mudstones in the central Qaidam Basin were studied to understand the provenance, palaeotectonic setting, hydrothermal activity, palaeoredox conditions and sedimentary rate. The results show that the lacustrine mudstones were mainly derived from felsic sources with little contribution from ancient crustal sediments and no ultramafic (ophiolitic) source. The mudstones were deposited in a continental island arc tectonic setting, which is consistent with the tectonic evolution of the Cenozoic basin. Both two organic facies samples were hydrothermal in origin based on the ternary diagram of Ni–Zn–Co and normalized REE patterns. However, this does not mean that the water column in paleolake was affected by hydrothermal fluids in situ. This signal might indicate hydrothermal origins from hot springs related to active faults around the basin rather than the deep hydrothermal fluids entering the sediments via deep faculties based on the comprehensive analyses of normalized REE patterns, negative Euanom (Eu anomaly), Y/Ho, Sm/Yb, and Eu/Sm. Redox proxies including U/Th, Ni/Co, and Mnanom values, are more sensitive for the studied samples indicating that most of the organic facies A samples were deposited under an oxygen-depleted condition, while the organic facies B samples were deposited under oxygen-rich conditions. Redox proxies of Ceanom values are unavailable for the organic facies B samples due to hypersaline environments, and V/Cr and V/(V + Ni) are invalid for the organic facies A samples, possibly because of their organism composition. The low Lan/Ybn values indicate high sedimentation rates, which is consistent with the average sedimentation rates of approximately 0.43 to 1.1 km/Ma. However, the Lan/Ybn is more likely affected by the provenance of the studied samples, so it should be used with caution.

Graphical abstract

Keywords

elements / lacustrine mudstone / Pleistocene / Qigequan Formation / Qaidam Basin

Cite this article

Download citation ▾
Jinqi QIAO, Qingyong LUO, Chen ZHANG, Zhenxue JIANG. Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China. Front. Earth Sci., 2023, 17(2): 437‒454 https://doi.org/10.1007/s11707-022-0996-z

References

[1]
Alexander B W, Bau M, Andersson P, Dulski P (2008). Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa.Geochim Cosmochim Acta, 72(2): 378–394
CrossRef Google scholar
[2]
Ali F, Zhang S, Hanif M, Mohibullah M, Zhang Y, Usman M, Wang S, Liu X, Ma P, Huang D(2022). Geochemical investigation of low latitude black shale intervals of the Lower to Middle Jurassic succession, Indus Basin, Pakistan. Front Earth Sci, doi:10.1007/s11707-021-0943-4
[3]
Allègre C J, Minster J F (1978). Quantitative models of trace element behavior in magmatic processes.Earth Planet Sci Lett, 38(1): 1–25
CrossRef Google scholar
[4]
An Z, Kutzbach J E, Prell W L, Porter S C (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.Nature, 411(6833): 62–66
CrossRef Pubmed Google scholar
[5]
Armstrong-Altrin J S, Verma S P (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings.Sediment Geol, 177(1–2): 115–129
CrossRef Google scholar
[6]
Bao J, Wang Y, Song C, Feng Y, Hu C, Zhong S, Yang J (2017). Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate.Global Planet Change, 155: 56–69
CrossRef Google scholar
[7]
Bau M, Dulski P (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa.Precambrian Res, 79(1–2): 37–55
CrossRef Google scholar
[8]
Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoli Silva I, Venezia F (1996). Orbitally induced limestone/marlstone rhythms in the Albian—Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol, 126(3–4): 227–260
[9]
Bellanca A, Masetti D, Neri R (1997). Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol, 141(3–4): 141–152
[10]
Bhat M I, Ghosh S K (2001). Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Res, 108(1–2): 1–16
[11]
Bhatia M R (1983). Plate tectonics and geochemical composition of sandstones.J Geol, 91(6): 611–627
CrossRef Google scholar
[12]
Bhatia M R, Crook K A (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol, 92(2): 181–193
CrossRef Google scholar
[13]
Byrne R H, Kim K H (1990). Rare earth element scavenging in seawater.Geochim Cosmochim Acta, 54(10): 2645–2656
CrossRef Google scholar
[14]
Chen J, Algeo T J, Zhao L, Chen Z Q, Cao L, Zhang L, Li Y (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of south China.Earth Sci Rev, 149: 181–202
CrossRef Google scholar
[15]
Choi J H, Hariya Y (1992). Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido. Japan.Econ Geol, 87(5): 1265–1274
CrossRef Google scholar
[16]
Clark M K (2011). Early Tibetan Plateau uplift history eludes.Geology, 39(10): 991–992
CrossRef Google scholar
[17]
Condie K C (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales.Chem Geol, 104(1–4): 1–37
CrossRef Google scholar
[18]
Cox R, Lowe D R, Cullers R L (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta, 59(14): 2919–2940
CrossRef Google scholar
[19]
Crerar D A (1980). Geochemistry of manganese: an overview. In: Varentsov I M, Grassely G, eds. Geology and Geochemistry of Manganese. Stuttgart: E’Schweizerbart’sche Verlag, Vol.l, 353–365
[20]
Cullers R L (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in ansas, USA.Geochim Cosmochim Acta, 58(22): 4955–4972
CrossRef Google scholar
[21]
Cullers R L (1995). The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains Region, Colorado, USA. Chem Geol, 123(1–4): 107–131
[22]
Cullers R L (2000). The geochemistry of shales, siltstones, and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies.Lithos, 51: 181–203
CrossRef Google scholar
[23]
Cullers R L (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA.Chem Geol, 191(4): 305–327
CrossRef Google scholar
[24]
Cullers R L, Barrett T, Carlson R, Robinson B (1987). Rare-earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem Geol, 63(3–4): 275–297
[25]
Cullers R L, Berendsen P (1998). The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, USA.Eur J Mineral, 10(5): 987–1002
CrossRef Google scholar
[26]
Cullers R L, Podkovyrov V N (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res, 104(1–2): 77–1–2
[27]
Cullers R L, Podkovyrov V N (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 117 (3–4): 157–183
[28]
Dang Y Q, Zhao W Z, Su A G, Zhang S C, Li M W, Guan Z Q, Ma D D, Chen X L, Shuai Y H, Wang H T, Tan Y H, Xu Z Y (2008). Biogenic gas systems in eastern Qaidam Basin.Mar Petrol Geol, 25: 344–356
[29]
Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems.Geochim Cosmochim Acta, 63(5): 627–643
CrossRef Google scholar
[30]
Douville E, Charlou J L, Oelkers E H, Bienvenu P, Jove Colon C F, Donval J P, Fouquet Y, Prieur D, Appriou P (2002). The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol, 184(1–2): 37–48
[31]
Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X (2007). Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.Nature, 445(7128): 635–638
CrossRef Pubmed Google scholar
[32]
Elderfield H, Greaves M J (1982). The rare earth elements in seawater.Nature, 296(5854): 214–219
CrossRef Google scholar
[33]
Fang X M, Zhang W L, Meng Q Q, Gao J J, Wang X M, King J, Song C H, Dai S, Miao Y F (2007). High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet Sci Lett, 258(1–2): 293–306
[34]
Feng R, Kerrich R (1990). Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting.Geochim Cosmochim Acta, 54(4): 1061–1081
CrossRef Google scholar
[35]
Floyd P A, Leveridge B E, Franke W, Shail R, Dörr W (1990). Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany.Geol Rundsch, 79(3): 611–626
CrossRef Google scholar
[36]
Floyd P, Leveridge B (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.J Geol Soc London, 144(4): 531–542
CrossRef Google scholar
[37]
Fouquet Y, Charlou J L, von Stackelberg U, Wiedicke M, Erzinger J, Herzig P M, Muehe R (1993). Metallogenesis in back-arc environments: the Lau Basin example.Economic Geology, 88(8): 2154–2181
CrossRef Google scholar
[38]
Garver J I, Royce P R, Smick T A (1996). Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source.J Sediment Res, 66: 100–106
[39]
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011). Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen.Tectonics, 30(5): TC5016
CrossRef Google scholar
[40]
German C R, Elderfield H (1990). Application of the Ce anomaly as a paleoredox indicator: the ground rules.Paleoceanography, 5(5): 823–833
CrossRef Google scholar
[41]
Goldstein S J, Jacobsen S B (1988). Rare earth elements in river waters.Earth Planet Sci Lett, 89(1): 35–47
CrossRef Google scholar
[42]
Hanson A D, Ritts B D, Zinniker D, Moldowan J M, Biffi U (2001). Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China.AAPG Bull, 85: 601–619
[43]
Harrison T M, Copeland P, Kidd W S F, Yin A (1992). Raising tibet.Science, 255(5052): 1663–1670
CrossRef Pubmed Google scholar
[44]
Hatch J R, Leventhal J S (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.Chem Geol, 99(1–3): 65–82
CrossRef Google scholar
[45]
Hiscott R N (1984). Ophiolitic source rocks for Taconic-age flysch: trace element evidence.Geol Soc Am Bull, 95(11): 1261–1267
CrossRef Google scholar
[46]
Hongo Y, Obata H, Gamo T, Nakaseama M, Ishibashi J, Konno U, Saegusa S, Ohkubo S, Tsunogai U (2007). Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin.Geochem J, 41(1): 1–15
CrossRef Google scholar
[47]
Ibach L E J (1982). Relationship between sedimentation rate and total organic carboncontent in ancient marine sediments.AAPG Bull, 66: 170–188
[48]
Jian X, Guan P, Zhang W, Feng F (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: implications for provenance and weathering.Chem Geol, 360-361: 74–88
CrossRef Google scholar
[49]
Johannesson K H, Lyons W B, Bird D A (1994). Rare earth element concentrations and speciation in alkaline lakes from the western USA.Geophys Res Lett, 21(9): 773–776
CrossRef Google scholar
[50]
Johnsson M J (1993). The system controlling the composition of clastic sediments. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments.Geological Society of America Special Paper, 284: 1–19
[51]
Jones B, Manning D A C (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 111(1–4): 111–129
CrossRef Google scholar
[52]
Katz M E, Miller K G, Wright J D, Wade B S, Browning J V, Cramer B S, Rosenthal Y (2008). Stepwise transition from the Eocene greenhouse to the Oligocene icehouse.Nat Geosci, 1(5): 329–334
CrossRef Google scholar
[53]
Kent-Corson M L, Ritts B D, Zhuang G, Bovet P M, Graham S A, Page Chamberlain C (2009). Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282(1–4): 158–166
[54]
Kutzbach J E, Prell W L, Ruddiman Wm F (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau.J Geol, 101(2): 177–190
CrossRef Google scholar
[55]
LaMaskin T A, Dorsey R, Vervoort J D (2008). Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, USA: implications for Cordilleran tectonics.J Sediment Res, 78(12): 765–783
CrossRef Google scholar
[56]
Li J J, Fang X M, Song C H, Pan B T, Ma Y Z, Yan M D (2014). Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects onclimatic and environmental changes.Quat Res, 81(3): 400–423
CrossRef Google scholar
[57]
Li J, Chen F, Ling Z, Li T (2021b). Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: geochemical and Li isotopic evidence.Ore Geol Rev, 139: 104481
CrossRef Google scholar
[58]
Li M, Fang X, Wang Z, Li J, Yan M, Galy A, Wang J, Lu S, Zhu L (2022). Using mineralogy and Sr-Nd isotopes of gypsum to constrain the provenance of sediments in the western Qaidam Basin, northern Tibetan Plateau: implications for neo-tectonic activities.J Asian Earth Sci, 223: 104983
CrossRef Google scholar
[59]
Li Y, Wang Z, Wu P, Meng S (2021a). Paleoenvironment reconstruction of the upper paleozoic in the linxing area, northeastern Ordos Basin, China.AAPG Bull, 105(12): 2545–2574
CrossRef Google scholar
[60]
Lv J, Zhang S, Yang N, Fu C, Yan X, Li Y (2021). Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China.Front Earth Sci, 15(4): 737–753
CrossRef Google scholar
[61]
Möller P, Bau M (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet Sci Lett, 117(3–4): 671–676
[62]
Machhour L, Philip J, Oudin J L (1994). Formation of laminite deposits in anaerobic—dysaerobic marine environments. Mar Geol, 117(1–4): 287–302
[63]
Mattinson C G, Wooden J L, Zhang J X, Bird D K (2009). Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. J Asian Earth Sci, 35(3–4): 298–309
[64]
McCulloch M T, Wasserburg G J (1978). Sm-nd and rb-sr chronology of continental crust formation.Science, 200(4345): 1003–1011
CrossRef Pubmed Google scholar
[65]
McLennan S M (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements.Rev Mineral, 21: 169–200
[66]
McLennan S M, Hemming S, McDaniel D K, Hanson G N (1993). Geochemical approaches to sedimentation, provenance, and tectonics.Special Papers-Geological Society of America, 21–40
[67]
McLennan S M, Taylor S R (1991). Sedimentary rocks and crustal evolution: tectonic setting and secular trends.J Geol, 99(1): 1–21
CrossRef Google scholar
[68]
McLennan S M, Taylor S R, Eriksson K A (1983). Geochemistry of Archean shales from the Pilbara Supergroup, western Australia.Geochim Cosmochim Acta, 47(7): 1211–1222
CrossRef Google scholar
[69]
McLennan S M, Taylor S R, McCulloch M T, Maynard J B (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations.Geochim Cosmochim Acta, 54(7): 2015–2050
CrossRef Google scholar
[70]
Meng Q Q, Song C H, Nie J S, Liu C, He P J, Liu F B, Li L (2020). Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau.Tectonophysics, 77(5): 228279
[71]
Menold C A, Manning C E, Yin A, Tropper P, Chen X H, Wang X F (2009). Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahighpressure eclogites in the North Qaidam metamorphic belt, western China. J Asian Earth Sci, 35(3–4): 273–284
[72]
Miao Y, Fang X, Herrmann M, Wu F, Zhang Y, Liu D (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon.Palaeogeogr Palaeoclimatol Palaeoecol, 299(1–2): 30–38
CrossRef Google scholar
[73]
Michard A, Albarède F (1986). The REE content of some hydrothermal fluids. Chem Geol, 55(1–2): 51–60
[74]
Molnar P, England P, Martinod J (1993). Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon.Rev Geophys, 31(4): 357–396
CrossRef Google scholar
[75]
Nance W B, Taylor S R (1976). Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks.Geochim Cosmochim Acta, 40(12): 1539–1551
CrossRef Google scholar
[76]
Nelson B K, DePaolo D J (1988). Comparison of isotopic and petrographic provenance indicators in sediments from Tertiary continental basins of New Mexico.J Sediment Res, 58(2): 348–357
[77]
Pang X, Zhao W, Su A, Zhang S, Li M, Dang Y, Xu F, Zhou R, Zhang D, Xu Z, Guan Z, Chen J, Li S (2005). Geochemistry and origin of the giant Quaternary shallow gas accumulations in the eastern Qaidam Basin, NW China.Org Geochem, 36(12): 1636–1649
CrossRef Google scholar
[78]
Pi D H, Liu C Q, Shields-Zhou G A, Jiang S Y (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, south China: constraints for redox environments and origin of metal enrichments.Precambrian Res, 225: 218–229
CrossRef Google scholar
[79]
Piepgras D J, Jacobsen S B (1992). The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column.Geochim Cosmochim Acta, 56(5): 1851–1862
CrossRef Google scholar
[80]
Qiao J, Grohmann S, Baniasad A, Zhang C, Jiang Z, Littke R (2021). High microbial gas potential of Pleistocene lacustrine deposits in the central Qaidam Basin, China: an organic geochemical and petrographic assessment.Int J Coal Geol, 245: 103818
CrossRef Google scholar
[81]
Qiao J, Littke R, Grohmann S, Zhang C, Jiang Z, Strauss H, Zieger L (2022). Climatic and environmental conditions during the Pleistocene in the Central Qaidam Basin, NE Tibetan Plateau: evidence from GDGTs, stable isotopes and major and trace elements of the Qigequan Formation.Int J Coal Geol, 254: 103958
CrossRef Google scholar
[82]
Qiao J, Liu L, Shang X (2020). Deposition conditions of the jurassic lacustrine source rocks in the East Fukang sag, Junggar Basin, NW China: evidence from major and trace elements.Geol J, 55(7): 4936–4953
CrossRef Google scholar
[83]
Qiu N, Kang Y, Jin Z (2003). Temperature and pressure field in the Tertiary succession of the western Qaidam Basin, northeast Qinghai-Tibet Plateau, China.Mar Pet Geol, 20(5): 493–507
CrossRef Google scholar
[84]
Ramstein G, Fluteau F, Besse J, Joussaume S (1997). Effect on orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years.Nature, 386(6627): 788–795
CrossRef Google scholar
[85]
Rieser A B, Liu Y, Genser J, Neubauer F, Handler R, Friedl G, Ge X H (2006a). 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China.Geol Soc Am Bull, 118(11–12): 1522–1534
CrossRef Google scholar
[86]
Rieser A B, Liu Y, Genser J, Neubauer F, Handler R, Ge X H (2006b). Uniform Permian 40Ar/39Ar detrital mica ages in the eastern Qaidam Basin (NW China): where is the source?.Terra Nova, 18(1): 79–87
CrossRef Google scholar
[87]
Rieser A B, Neubauer F, Liu Y, Ge X (2005). Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control.Sediment Geol, 177(1–2): 1–18
CrossRef Google scholar
[88]
Ritts B D, Biffi U (2001). Mesozoic northeast Qaidam basin: response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in central Asia.Mem Geol Soc Am, 194: 293–316
CrossRef Google scholar
[89]
Roser B P, Korsch R J (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio.J Geol, 94(5): 635–650
CrossRef Google scholar
[90]
Royden L H, Burchfiel B C, van der Hilst R D (2008). The geological evolution of the Tibetan Plateau.Science, 321(5892): 1054–1058
CrossRef Pubmed Google scholar
[91]
Ryan K M, Williams D M (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chem Geol, 242(1–2): 103–125
[92]
Shi C, Cao J, Han S, Hu K, Bian L, Yao S (2021). A review of polymetallic mineralization in lower Cambrian black shales in South China: combined effects of seawater, hydrothermal fluids, and biological activity.Palaeogeogr Palaeoclimatol Palaeoecol, 561: 110073
CrossRef Google scholar
[93]
Shi C, Yan M, Chi Q (2007). Abundances of chemical elements of the granitoids in different geotectonic units of China and their characteristics.Front Earth Sci China, 1(3): 309–321
CrossRef Google scholar
[94]
Shuai Y, Zhang S, Grasby S E, Chen Z, Ma D, Wang L, Li Z, Wei C (2013). Controls on biogenic gas formation in the Qaidam Basin, northwestern China.Chem Geol, 335: 36–47
CrossRef Google scholar
[95]
Song S G, Zhang L F, Niu Y L, Su L, Jian P, Liu D Y (2005). Geochronology of diamondbearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 234(1–2): 99–118
[96]
Song S, Su L, Niu Y, Zhang G, Zhang L (2009). Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review. J Asian Earth Sci, 35(3–4): 285–297
[97]
Stein R (1986). Organic carbon and sedimentation rate–further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Mar Geol, 72(3–4): 199–209
[98]
Stober I, Zhong J, Zhang L, Bucher K (2016). Deep hydrothermal fluid-rock interaction: the thermal springs of Da Qaidam, China.Geofluids, 16(4): 711–728
CrossRef Google scholar
[99]
Sun J, Ye J, Wu W, Ni X, Bi S, Zhang Z, Liu W, Meng J (2010). Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior.Geology, 38(6): 515–518
CrossRef Google scholar
[100]
Sun Q, Wang Z, Chen J, Feng W (2009). Climate implications of major geochemical elements in the Holocene sediments of the North and East China monsoonal regions.Front Earth Sci, 3(3): 291–296
CrossRef Google scholar
[101]
Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y (2001). Oblique stepwise rise and growth of the Tibet Plateau.Science, 294(5547): 1671–1677
CrossRef Pubmed Google scholar
[102]
Taylor S R, McLennan S M (1985). The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific
[103]
Taylor S R, McLennan S M, McCulloch M T (1983). Geochemistry of loess, continental crustal composition and crustal model ages.Geochim Cosmochim Acta, 47(11): 1897–1905
CrossRef Google scholar
[104]
Tribovillard N P, Algeo T J, Lyons T, Riboulleau A (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1–2): 12–32
[105]
Tyson R V (2001). Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study.Org Geochem, 32(2): 333–339
CrossRef Google scholar
[106]
Wang C, Zhao X, Liu Z, Lippert P C, Graham S A, Coe R S, Yi H, Zhu L, Liu S, Li Y (2008). Constraints on the early uplift history of the Tibetan Plateau.Proc Natl Acad Sci USA, 105(13): 4987–4992
CrossRef Pubmed Google scholar
[107]
Wang T, Yang S, Duan S, Chen H, Liu H, Cao J (2015). Multi-stage primary and secondary hydrocarbon migration and accumulation in lacustrine jurassic petroleum systems in the northern Qaidam Basin, NW China.Mar Pet Geol, 62: 90–101
CrossRef Google scholar
[108]
Wen H, Zheng R, Geng W, Fan M, Wang M (2007). Characteristics of rare earth elements of lacustrine exhalative rock in the Xiagou Formation of Lower Cretaceous in Qingxi sag, Jiuxi Basin.Front Earth Sci China, 1(3): 333–340
CrossRef Google scholar
[109]
Wu Z, He S, He Z, Li X, Zhai G, Huang Z (2022). Petrographical and geochemical characterization of the Upper Permian Longtan formation and Dalong Formation in the Lower Yangtze region, South China: implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms.Mar Pet Geol, 139: 105580
CrossRef Google scholar
[110]
Yin A, Harrison T M (2000). Geologic evolution of the Himalayan–Tibetan orogen.Annu Rev Earth Planet Sci, 28(1): 211–280
CrossRef Google scholar
[111]
Yu J, Gao C, Cheng A, Liu Y, Zhang L, He X (2013). Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China.Ore Geol Rev, 50: 171–183
CrossRef Google scholar
[112]
Zhang G, Song S, Zhang L, Niu Y (2008). The subducted oceanic crust within continental-type UHP metamorphic belt in the north Qaidam, NW China: evidence from petrology, geochemistry and geochronology. Lithos, 104(1–4): 99–118
[113]
Zhang J X, Mattinson C G, Meng F C, Yang H J, Wan Y S (2009). U–Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China: constraints on the exhumation of HP/UHP metamorphic rocks. J Asian Earth Sci, 35(3–4): 245–258
[114]
Zhang M, Liu Z, Xu S, Sun P, Hu X (2013). Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe Area of Southern Margin of Junggar Basin.J Earth Sci, 24(6): 987–996
CrossRef Google scholar
[115]
Zhang S C, Li M W, Shuai Y H, Huang L, Su A G, Li Z X (2014). Biogeochemical identification of the Quaternary biogenic gas source rock in the Sanhu Depression, Qaidam Basin.Org Geochem, 73: 101–108
CrossRef Google scholar
[116]
Zhang S C, Shuai Y H, Huang L, Wang L Q, Su J, Huang H P, Ma D D, Li M W (2013a). Timing of biogenic gas formation in the eastern Qaidam Basin, NW China.Chem Geol, 352: 70–80
CrossRef Google scholar
[117]
Zhuang G, Hourigan J K, Koch P L, Ritts B D, Kent-Corson M L (2011a). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. Earth Planet Sci Lett, 312(1–2): 152–163
[118]
Zhuang G, Hourigan J K, Ritts B D, Kent-Corson M L (2011b). Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, northwest China.Am J Sci, 311(2): 116–152
CrossRef Google scholar
[119]
Zhuang G, Zhang Y G, Hourigan J, Hourigan J, Ritts B, Hren M, Hou M, Wu M, Kim B (2019). Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau.Geophys Res Lett, 46(3): 1312–1319
CrossRef Google scholar

Acknowledgments

The study was granted financial support by the National Natural Science Foundation of China (Grant Nos. 42202154 and 42002050), and the Science Foundation of China University of Petroleum, Beijing (No. ZX20220074). Furthermore, we acknowledge four anonymous reviewers for the constructive comments on the original version of this manuscript.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(12965 KB)

Accesses

Citations

Detail

Sections
Recommended

/