Chlorophyll bloom enhanced by a mesoscale eddy in the western South China Sea
Yongqiang CHEN, Dajun QIU, Peter CORNILLON, Meilin WU
Chlorophyll bloom enhanced by a mesoscale eddy in the western South China Sea
Remote sensing of ocean color is used to detect phytoplankton blooms and oceanic eddies. In this study, satellite remote sensing was used to detect an eddy-like phytoplankton bloom in the western South China Sea in early September, 2007. The eddy-like phytoplankton bloom formed in the middle of August, before the formation of a cyclonic eddy. The time series reveals a lag period of about 1 week between maximum chlorophyll (Chl a) and maximum eddy intensity. This lag may have been related to the Mekong River discharge and its subsequent mixing by the cyclonic eddy. The spatial distribution of the bloom was characterized by a jet of high Chl a. Our data provide evidence that a significant proportion of south-westerly monsoon driven nutrients are used by phytoplankton. We also determined that phytoplankton blooms may support the large-scale advective spreading of high biomass waters to the open ocean by large surface currents. These biomass rich waters are probably important in the food chain dynamics of the outer south-eastern shelf and the coral islands or atolls in the open ocean.
cyclonic eddy / chlorophyll a / western South China Sea / remote sensing / phytoplankton
[1] |
Baith K, , Lindsay R, , Fu G, , McClain C R . ( 2001). Data Analysis System Developed for Ocean Color Satellite Sensors. Eos (Wash DC), 82( 18): 202– 204
CrossRef
Google scholar
|
[2] |
Belkin I M, , Cornillon P C, , Sherman K . ( 2009). Fronts in Large Marine Ecosystems. Prog Oceanogr, 81( 1–4): 223– 236
|
[3] |
Bibby T S, , Moore C M . ( 2011). Silicate: nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosci Discuss, 7: 7505– 7525
CrossRef
Google scholar
|
[4] |
Bombar D, , Dippner J W, , Hai Nhu D, , Lam Nguyen N, , Liskow I, , Loick-Wilde N, , Voss M . ( 2010). Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea. J Geophys Res Oceans, 115: C06018
CrossRef
Google scholar
|
[5] |
Chen G, , Hou Y, , Zhang Q, , Chu X . ( 2010). The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Cont Shelf Res, 30( 7): 715– 723
CrossRef
Google scholar
|
[6] |
Chen X, , Schallenberg C, , Phillips H, , Chase Z . ( 2021). Biogeochemical characteristics of eddies in the East Australian Current depend on eddy type, history and location. J Mar Syst, 216( 5): 103512
CrossRef
Google scholar
|
[7] |
Chen Y, , Tang D . ( 2012). Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea. Int J Remote Sens, 33( 23): 7444– 7457
CrossRef
Google scholar
|
[8] |
Crawford W R, , Brickley P J, , Thomas A C . ( 2007). Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog Oceanogr, 75( 2): 287– 303
CrossRef
Google scholar
|
[9] |
Dippner J W, , Nguyen-Ngoc L, , Doan-Nhu H, , Subramaniam A . ( 2011). A model for the prediction of harmful algae blooms in the Vietnamese upwelling area. Harmful Algae, 10: 606– 611
CrossRef
Google scholar
|
[10] |
Dippner J W, , Loick-Wilde N . ( 2011). A redefinition of water masses in the Vietnamese upwelling area. J Mar Syst, 84( 1–2): 42– 47
CrossRef
Google scholar
|
[11] |
Everett J D, , Baird M E, , Oke P R, , Suthers I M . ( 2012). An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophys Res Lett, 39: L16608
CrossRef
Google scholar
|
[12] |
Grosse J, , Bombar D, , Doan H N, , Nguyen L N, , Voss M . ( 2010). The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low- and high-discharge season. Limnol Oceanogr, 55( 4): 1668– 1680
CrossRef
Google scholar
|
[13] |
Hu C M, , Hackett K E, , Callahan M K, , Andrefouet S, , Wheaton J L, , Porter J W, , Muller-Karger F E . ( 2003). The 2002 ocean color anomaly in the Florida Bight: a cause of local coral reef decline?. Geophys Res Lett, 30( 3): 1151
CrossRef
Google scholar
|
[14] |
Hu J, , Gan J, , Sun Z, , Zhu J, , Dai M . ( 2011). Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. J Geophys Res Oceans, 116: C05016
CrossRef
Google scholar
|
[15] |
Kim D, , Yang E J, , Kim K H, , Shin C W, , Park J, , Yoo S, , Hyun J H . ( 2012). Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea). ICES J Mar Sci, 69( 1): 23– 29
CrossRef
Google scholar
|
[16] |
Klein P, , Lapeyre G . ( 2009). The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci, 1( 1): 351– 375
CrossRef
Pubmed
Google scholar
|
[17] |
McGillicuddy D J Jr . ( 2016). Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annu Rev Mar Sci, 8( 1): 125– 159
CrossRef
Pubmed
Google scholar
|
[18] |
McGillicuddy D J Jr, , Johnson R, , Siegel D A, , Michaels A F, , Bates N R, , Knap A H . ( 1999). Mesoscale variations of biogeochemical properties in the Sargasso Sea. J Geophys Res, 104( C6): 13381– 13394
CrossRef
Google scholar
|
[19] |
Mizobata K, , Saitoh S I, , Shiomoto A, , Miyamura T, , Shiga N, , Imai K, , Toratani M, , Kajiwara Y, , Sasaoka K . ( 2002). Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Prog Oceanogr, 55( 1–2): 65– 75
CrossRef
Google scholar
|
[20] |
Mouriño-Carballido B . ( 2009). Eddy-driven pulses of respiration in the Sargasso Sea. Deep Sea Res Part I Oceanogr Res Pap, 56( 8): 1242– 1250
CrossRef
Google scholar
|
[21] |
Muller-karger F E, , McClain C R, , Richardson P L . ( 1988). The dispersal of the Amazons water. Nature, 333( 6168): 56– 59
CrossRef
Google scholar
|
[22] |
Qiu D, , Zhong Y, , Chen Y, , Tan Y, , Song X, , Huang L . ( 2019). Short-term phytoplankton dynamicsduring typhoon season in and near the Pearl River Estuary, South China Sea. J Geophys Res Biogeosci, 124( 2): 274– 292
CrossRef
Google scholar
|
[23] |
Shenoi S S C, , Shankar D, , Shetye S R . ( 2004). Remote forcing annihilates barrier layer in southeastern Arabian Sea. Geophys Res Lett, 31( 5): 1– 4
CrossRef
Google scholar
|
[24] |
Shih Y Y, , Hung C C, , Gong G C, , Chung W C, , Wang Y H, , Lee I H, , Chen K S, , Ho C Y . ( 2015). Enhanced particulate organic carbon export at eddy edges in the oligotrophic western North Pacific Ocean. PLoS One, 10( 7): e0131538
CrossRef
Google scholar
|
[25] |
Siegel D A, , McGillicuddy D J Jr, , Fields E A . ( 1999). Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J Geophys Res, 104( C6): 13359– 13379
CrossRef
Google scholar
|
[26] |
Sun F L, , Xia X M, , Simon M, , Wang Y S, , Zhao H Y, , Sun C C, , Cheng H, , Wang Y T, , Hu S B, , Fei J, , Wu M L . ( 2022). Anticyclonic eddy driving significant changes in prokaryotic and eukaryotic communities in the South China Sea. Front Mar Sci, 9: 773548
CrossRef
Google scholar
|
[27] |
Tang D L, , Kawamura H, , Doan-Nhu H, , Takahashi W . ( 2004a). Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. J Geophys Res Oceans, 109: C03014
CrossRef
Google scholar
|
[28] |
Tang D L, , Kawamura H, , Luis A J . ( 2002). Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sens Environ, 81( 1): 82– 89
CrossRef
Google scholar
|
[29] |
Tang D L, , Kawamura H, , Van Dien T, , Lee M . ( 2004b). Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea. Mar Ecol Prog Ser, 268: 31– 41
CrossRef
Google scholar
|
[30] |
Wang G, , Ling Z, , Wang C . ( 2009). Influence of tropical cyclones on seasonal ocean circulation in the South China Sea. J Geophys Res Oceans, 114: C10022
CrossRef
Google scholar
|
[31] |
Wang L, , Huang B, , Chiang K P, , Liu X, , Chen B, , Xie Y, , Xu Y, , Hu J, , Dai M . ( 2016). Physical-biological coupling in the western South China Sea: the response of phytoplankton community to a mesoscale cyclonic eddy. PLoS One, 11( 4): e0153735
CrossRef
Google scholar
|
[32] |
Wentz F J, Smith D K, Mears C A, Gentemann C L, Ieee I ( 2001) Advanced algorithms for QuikScat and SeaWinds/AMSR. In: Proceedings Igarss 2001: Scanning the Present and Resolving the Future, Vols 1–7: 1079– 1081
|
[33] |
Wu M L, , Wang Y S, , Wang Y T, , Sun F L, , Li X, , Gu F F, , Xiang J C . ( 2022). Vertical patterns of chlorophyll a in the euphotic layer are related to mesoscale eddies in the South China Sea. Front Mar Sci, 9: 948665
CrossRef
Google scholar
|
[34] |
Wu M L, , Wang Y S, , Wang Y Y, , Sun F L, , Li X M , , Gu J D . ( 2022b). A weak cold eddy influencing nitrogen form in the western part of the South China Sea. Regional Studies Mar Sci, 55: 102521
|
[35] |
Xie S P, , Chang C H, , Xie Q, , Wang D . ( 2007). Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. J Geophys Res Oceans, 112: C10008
CrossRef
Google scholar
|
[36] |
Xie S P, , Xie Q, , Wang D X, , Liu W T . ( 2003). Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res Oceans, 108( C8): 3261
CrossRef
Google scholar
|
/
〈 | 〉 |