Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean
Jianjun XUE, Ziniu XIAO, David H. BROMWICH, Lesheng BAI
Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean
A recent version of the Polar Weather Research and Forecasting model (Polar WRF) has been upgraded to the version 4.X era with an improved NoahMP Land Surface Model (LSM). To assess the model performance over the Antarctic and Southern Ocean, downscaling simulations with different LSM (NoahMP, Noah), WRF versions (Polar WRF 4.1.1 and earlier version 4.0.3, WRF 4.1.1), and driving data (ERA-Interim, ERA5) are examined with two simulation modes: the short-term that consists of a series of 48 h segments initialized daily at 0000 UTC with the first 24 h selected for model spin-up, whereas the long-term component used to evaluate long-term prediction consists of a series of 38−41 day segments initialized using the first 10 days for spin-up of the hydrological cycle and planetary boundary layer structure. Simulations using short-term mode driven by ERA-Interim with NoahMP and Noah are selected for benchmark experiments. The results show that Polar WRF 4.1.1 has good skills over the Antarctic and Southern Ocean and better performance than earlier simulations. The reduced downward shortwave radiation bias released with WRF 4.1.1 performed well with PWRF411. Although NoahMP and Noah led to very similar conclusions, NoahMP is slightly better than Noah, particularly for the 2 m temperature and surface radiation because the minimum albedo is set at 0.8 over the ice sheet. Moreover, a suitable nudging setting plays an important role in long-term forecasts, such as reducing the surface temperature diurnal cycle near the coast. The characteristics investigated in this study provide a benchmark to improve the model and guidance for further application of Polar WRF in the Antarctic.
Polar WRF / downscaling simulation / performance evaluation / the Antarctic and Southern Ocean
Jianjun Xue, Ph.D. candidate of State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. He mainly focuses on polar meteorology and climatology being studied using climate models. He was working for the polar version of the regional WRF model that is being developed, tested, and applied as a visiting scholar at The Ohio State University, USA from August 2018 to July 2020. His e-mail is jianjxue@hotmail.com
Ziniu Xiao, received his Ph.D. Degree in Atmospheric Science from Institute of Atmospheric Physics, Chinese Academy of Sciences. Beijing, China, in 2006. He is the chief scientist of National Basic Research Program of China Program. Professor and director of State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics. He mainly focuses on climate dynamics, climate prediction and weather forecast, solar impact on climate systems. Dr. Xiao’s e-mail is xiaozn@lasg.iap.ac.cn
David H. Bromwich, received his Ph.D. Degree in meteorology from the University of Wisconsin-Madison, USA, in 1979. Research Professor, Senior Research Scientist, Atmospheric Sciences Program, Dept. of Geography, Byrd Polar and Climate Research Center of The Ohio State University. He focuses on global climate change in high latitudes resulting from local and tropical influences and uses climate models and atmospheric reanalyses as well as the polar version of the regional WRF model that is being developed, tested, and applied to climate variability and change problems in both polar regions. Dr. Bromwich’s e-mail is bromwich.1@osu.edu
Lesheng Bai, Senior Research Associate of Polar Meteorology Group, Byrd Polar and Climate Research Center of The Ohio State University. He focuses on the polar version of the regional WRF model that is being developed, tested, and applied to climate variability and change problems in both polar regions. His e-mail is bailesheng@hotmail.com
[1] |
AlleyR B, EmanuelK A, ZhangF. ( 2019). Advances in weather prediction. Science, 363( 6425): 342– 344
CrossRef
Google scholar
|
[2] |
BauerP, ThorpeA, BrunetG. ( 2015). The quiet revolution of numerical weather prediction. Nature, 525( 7567): 47– 55
CrossRef
Google scholar
|
[3] |
BerrisfordP DeeD P PoliP BruggeR FieldingM FuentesM KållbergP W KobayashiS UppalaS SimmonsA ( 2011). The ERA-Interim archive Version 2.0. ECMWF
|
[4] |
BracegirdleT J, MarshallG J. ( 2012). The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim, 25( 20): 7138– 7146
CrossRef
Google scholar
|
[5] |
BromwichD H, BaiL, BjarnasonG G. ( 2005). High-resolution regional climate simulations over iceland using Polar MM5*. Mon Weather Rev, 133( 12): 3527– 3547
CrossRef
Google scholar
|
[6] |
BromwichD H, HinesK M, BaiL. ( 2009). Development and testing of polar weather research and forecasting model: 2. Arctic Ocean. J Geophys Res, 114( D8): D08122
CrossRef
Google scholar
|
[7] |
BromwichD H, NicolasJ P, HinesK M, KayJ E, KeyE L, LazzaraM A, LubinD, McFarquharG M, GorodetskayaI V, GrosvenorD P, Lachlan-CopeT, van LipzigN P M. ( 2012). Tropospheric clouds in Antarctica. Rev Geophys, 50( 1): RG1004
CrossRef
Google scholar
|
[8] |
BromwichD H, NicolasJ P, MonaghanA J, LazzaraM A, KellerL M, WeidnerG A, WilsonA B. ( 2013a). Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 6( 2): 139– 145
CrossRef
Google scholar
|
[9] |
BromwichD H, NicolasJ P, MonaghanA J, LazzaraM A, KellerL M, WeidnerG A, WilsonA B. ( 2014). Erratum: corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 7( 1): 76
CrossRef
Google scholar
|
[10] |
BromwichD H OtienoF O HinesK M ManningK W ShiloE ( 2013b). Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic J Geophys Res D Atmospheres, 118( 2): 274− 292
|
[11] |
BromwichD H, WilsonA B, BaiL, LiuZ, BarlageM, ShihC F, MaldonadoS, HinesK M, WangS H, WoollenJ, KuoB, LinH C, WeeT K, SerrezeM C, WalshJ E. ( 2018). The arctic system reanalysis, Version 2. Bull Am Meteorol Soc, 99( 4): 805– 828
CrossRef
Google scholar
|
[12] |
CassanoJ J, HigginsM E, SeefeldtM W. ( 2011). Performance of the weather research and forecasting model for month-long Pan-Arctic simulations. Mon Weather Rev, 139( 11): 3469– 3488
CrossRef
Google scholar
|
[13] |
ChenS Y, WeeT K, KuoY H, BromwichD H. ( 2014). An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon Weather Rev, 142( 11): 4187– 4206
CrossRef
Google scholar
|
[14] |
DeContoR M, PollardD. ( 2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531( 7596): 591– 597
CrossRef
Google scholar
|
[15] |
GlisanJ M, GutowskiW J Jr, CassanoJ J, HigginsM E. ( 2013). Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim, 26( 12): 3985– 3999
CrossRef
Google scholar
|
[16] |
GuoZ, BromwichD H, CassanoJ J. ( 2003). Evaluation of Polar MM5 simulations of antarctic atmospheric circulation. Mon Weather Rev, 131( 2): 384– 411
CrossRef
Google scholar
|
[17] |
HinesK M, BromwichD H. ( 2008). Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon Weather Rev, 136( 6): 1971– 1989
CrossRef
Google scholar
|
[18] |
HinesK M, BromwichD H. ( 2017). Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon Weather Rev, 145( 2): 521– 541
CrossRef
Google scholar
|
[19] |
HinesK M, BromwichD H, BaiL, BitzC M, PowersJ G, ManningK W. ( 2015). Sea ice enhancements to Polar WRF. Mon Weather Rev, 143( 6): 2363– 2385
CrossRef
Google scholar
|
[20] |
HinesK M, BromwichD H, BaiL S, BarlageM, SlaterA G. ( 2011). Development and testing of Polar WRF. Part III: Arctic land. J Clim, 24( 1): 26– 48
CrossRef
Google scholar
|
[21] |
HinesK M BromwichD H WangS H SilberI VerlindeJ LubinD( 2019). Microphysics of summer clouds in central west Antarctica simulated by Polar WRF and AMPS. Atmos Chem Phys Discuss,
|
[22] |
IaconoM J, DelamereJ S, MlawerE J, ShephardM W, CloughS A, CollinsW D. ( 2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res, 113( D13): D13103
CrossRef
Google scholar
|
[23] |
JonesP D, ListerD H. ( 2015). Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int J Climatol, 35( 7): 1354– 1366
CrossRef
Google scholar
|
[24] |
JungT BauerP GoesslingH GordonN KlebeS BromwichD Doblas-ReyesF DayJ Fairall C HollandM IversenT LemkeP MillsB NurmiP PerovichD ReidP RenfrewI SmithG SvenssonG TolstykhM. ( 2015). The WWRP Polar Prediction Project (PPP). In: Seamless Prediction of The Earth System: From Minutes to Months, WMO-No. 1156, Geneva, WMO
|
[25] |
KainJ S. ( 2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43( 1): 170– 181
CrossRef
Google scholar
|
[26] |
KennicuttM C 2nd, ChownS L, CassanoJ J, LiggettD, MassomR, PeckL S, RintoulS R, StoreyJ W V, VaughanD G, WilsonT J, SutherlandW J. ( 2014). Polar research: six priorities for Antarctic science. Nature, 512( 7512): 23– 25
CrossRef
Google scholar
|
[27] |
KennicuttM C II, ChownS L, CassanoJ J, LiggettD, PeckL S, MassomR, RintoulS R, StoreyJ, VaughanD G, WilsonT J, AllisonI, AytonJ, BadheR, BaesemanJ, BarrettP J, BellR E, BertlerN, BoS, BrandtA, BromwichD, CaryS C, ClarkM S, ConveyP, CostaE S, CowanD, DecontoR, DunbarR, ElfringC, EscutiaC, FrancisJ, FrickerH A, FukuchiM, GilbertN, GuttJ, HavermansC, HikD, HosieG, JonesC, KimY D, LeMaho Y, LeeS H, LeppeM, LeitchenkovG, LiX, LipenkovV, LochteK, López-MartínezJ, LüdeckeC, LyonsW, MarenssiS, MillerH, MorozovaP, NaishT, NayakS, RavindraR, RetamalesJ, RicciC A, Rogan-FinnemoreM, Ropert-CoudertY, SamahA A, SansonL, ScambosT, SchlossI R, ShiraishiK, SiegertM J, SimõesJ C, StoreyB, SparrowM D, WallD H, WalshJ C, WilsonG, WintherJ G, XavierJ C, YangH, SutherlandW J. ( 2015). A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci, 27( 1): 3– 18
CrossRef
Google scholar
|
[28] |
KennicuttM C II, KimY D, Rogan-FinnemoreM, AnandakrishnanS, ChownS L, ColwellS, CowanD, EscutiaC, FrenotY, HallJ, LiggettD, McdonaldA J, NixdorfU, SiegertM J, StoreyJ, WåhlinA, WeatherwaxA, WilsonG S, WilsonT, WoodingR, AckleyS, BiebowN, BlankenshipD, BoS, BaesemanJ, CárdenasC A, CassanoJ, DanhongC, DañobeitiaJ, FrancisJ, GuldahlJ, HashidaG, CorbalánL J, KlepikovA, LeeJ, LeppeM, LijunF, López-MartinezJ, MemolliM, MotoyoshiY, BuenoR M, NegreteJ, CárdenesM A O, SilvaM P, Ramos-GarciaS, SalaH, ShinH, ShijieX, ShiraishiK, StockingsT, TrotterS, VaughanD G, DeMenezes J V D U, VlasichV, WeijiaQ, WintherJ G, MillerH, RintoulS, YangH. ( 2016). Delivering 21st century Antarctic and Southern Ocean science. Antarct Sci, 28( 6): 407– 423
CrossRef
Google scholar
|
[29] |
MayewskiP A, MeredithM P, SummerhayesC P, TurnerJ, WorbyA, BarrettP J, CasassaG, BertlerN A N, BracegirdleT, Naveira GarabatoA C, BromwichD, CampbellH, HamiltonG S, LyonsW B, MaaschK A, AokiS, XiaoC, van OmmenT. ( 2009). State of the Antarctic and Southern Ocean climate system. Rev Geophys, 47( 1): RG1003
CrossRef
Google scholar
|
[30] |
Miguez-MachoG, StenchikovG L, RobockA. ( 2004). Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res D Atmosph, 109: D13104
CrossRef
Google scholar
|
[31] |
MonaghanA, BromwichD. ( 2008). Global warming at the poles. Nat Geosci, 1( 11): 728– 729
CrossRef
Google scholar
|
[32] |
NakanishiM, NiinoH. ( 2009). Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn, 87( 5): 895– 912
CrossRef
Google scholar
|
[33] |
NiuG Y, YangZ L, MitchellK E, ChenF, EkM B, BarlageM, KumarA, ManningK, NiyogiD, RoseroE, TewariM, XiaY. ( 2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res D Atmospheres, 116( D12): D12109
CrossRef
Google scholar
|
[34] |
OlsonJ B KenyonJ S AngevineW A BrownJ M PagowskiM SušeljK ( 2019). A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW
|
[35] |
PowersJ G, KlempJ B, SkamarockW C, DavisC A, DudhiaJ, GillD O, CoenJ L, GochisD J, AhmadovR, PeckhamS E, GrellG A, MichalakesJ, TrahanS, BenjaminS G, AlexanderC R, DimegoG J, WangW, SchwartzC S, RomineG S, LiuZ, SnyderC, ChenF, BarlageM J, YuW, DudaM G. ( 2017). The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc, 98( 8): 1717– 1737
CrossRef
Google scholar
|
[36] |
PowersJ G, ManningK W, BromwichD H, CassanoJ J, CayetteA M. ( 2012). A decade of Antarctic science support through AMPS. Bull Am Meteorol Soc, 93( 11): 1699– 1712
CrossRef
Google scholar
|
[37] |
ScambosT A, BellR E, AlleyR B, AnandakrishnanS, BromwichD H, BruntK, ChristiansonK, CreytsT, DasS B, DeContoR, DutrieuxP, FrickerH A, HollandD, MacGregorJ, MedleyB, NicolasJ P, PollardD, SiegfriedM R, SmithA M, SteigE J, TruselL D, VaughanD G, YagerP L. ( 2017). How much, how fast? A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global Planet Change, 153: 16– 34
CrossRef
Google scholar
|
[38] |
ScottR C, NicolasJ P, BromwichD H, NorrisJ R, LubinD. ( 2019). Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J Clim, 32( 3): 665– 684
CrossRef
Google scholar
|
[39] |
UrbanM C, BocediG, HendryA P, MihoubJ B, Pe’erG, SingerA, BridleJ R, CrozierL G, DeMeester L, GodsoeW, GonzalezA, HellmannJ J, HoltR D, HuthA, JohstK, KrugC B, LeadleyP W, PalmerS C F, PantelJ H, SchmitzA, ZollnerP A, TravisJ M. ( 2016). Improving the forecast for biodiversity under climate change. Science, 353( 6304): aad8466
CrossRef
Google scholar
|
[40] |
WilsonA B, BromwichD H, HinesK M. ( 2011). Evaluation of Polar WRF forecasts on the Arctic system reanalysis domain: surface and upper air analysis. J Geophys Res, 116( D11): D11112
CrossRef
Google scholar
|
[41] |
WilsonA B, BromwichD H, HinesK M. ( 2012). Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. atmospheric hydrologic cycle. J Geophys Res D Atmosph, 117: D04107
CrossRef
Google scholar
|
[42] |
XueJ, BromwichD H, XiaoZ, BaiL. ( 2021). Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar WRF with 3DVAR. Q J R Meteorol Soc, 147( 740): 3806– 3834
CrossRef
Google scholar
|
[43] |
ZouX, BromwichD H, NicolasJ P, MontenegroA, WangS H. ( 2019). West Antarctic surface melt event of January 2016 facilitated by föhn warming. Q J R Meteorol Soc, 145( 719): 687– 704
CrossRef
Google scholar
|
/
〈 | 〉 |