Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean

Jianjun XUE, Ziniu XIAO, David H. BROMWICH, Lesheng BAI

PDF(12613 KB)
PDF(12613 KB)
Front. Earth Sci. ›› 2022, Vol. 16 ›› Issue (4) : 1005-1024. DOI: 10.1007/s11707-022-0971-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean

Author information +
History +

Abstract

A recent version of the Polar Weather Research and Forecasting model (Polar WRF) has been upgraded to the version 4.X era with an improved NoahMP Land Surface Model (LSM). To assess the model performance over the Antarctic and Southern Ocean, downscaling simulations with different LSM (NoahMP, Noah), WRF versions (Polar WRF 4.1.1 and earlier version 4.0.3, WRF 4.1.1), and driving data (ERA-Interim, ERA5) are examined with two simulation modes: the short-term that consists of a series of 48 h segments initialized daily at 0000 UTC with the first 24 h selected for model spin-up, whereas the long-term component used to evaluate long-term prediction consists of a series of 38−41 day segments initialized using the first 10 days for spin-up of the hydrological cycle and planetary boundary layer structure. Simulations using short-term mode driven by ERA-Interim with NoahMP and Noah are selected for benchmark experiments. The results show that Polar WRF 4.1.1 has good skills over the Antarctic and Southern Ocean and better performance than earlier simulations. The reduced downward shortwave radiation bias released with WRF 4.1.1 performed well with PWRF411. Although NoahMP and Noah led to very similar conclusions, NoahMP is slightly better than Noah, particularly for the 2 m temperature and surface radiation because the minimum albedo is set at 0.8 over the ice sheet. Moreover, a suitable nudging setting plays an important role in long-term forecasts, such as reducing the surface temperature diurnal cycle near the coast. The characteristics investigated in this study provide a benchmark to improve the model and guidance for further application of Polar WRF in the Antarctic.

Keywords

Polar WRF / downscaling simulation / performance evaluation / the Antarctic and Southern Ocean

Cite this article

Download citation ▾
Jianjun XUE, Ziniu XIAO, David H. BROMWICH, Lesheng BAI. Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean. Front. Earth Sci., 2022, 16(4): 1005‒1024 https://doi.org/10.1007/s11707-022-0971-8

Jianjun Xue, Ph.D. candidate of State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. He mainly focuses on polar meteorology and climatology being studied using climate models. He was working for the polar version of the regional WRF model that is being developed, tested, and applied as a visiting scholar at The Ohio State University, USA from August 2018 to July 2020. His e-mail is jianjxue@hotmail.com

Ziniu Xiao, received his Ph.D. Degree in Atmospheric Science from Institute of Atmospheric Physics, Chinese Academy of Sciences. Beijing, China, in 2006. He is the chief scientist of National Basic Research Program of China Program. Professor and director of State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics. He mainly focuses on climate dynamics, climate prediction and weather forecast, solar impact on climate systems. Dr. Xiao’s e-mail is xiaozn@lasg.iap.ac.cn

David H. Bromwich, received his Ph.D. Degree in meteorology from the University of Wisconsin-Madison, USA, in 1979. Research Professor, Senior Research Scientist, Atmospheric Sciences Program, Dept. of Geography, Byrd Polar and Climate Research Center of The Ohio State University. He focuses on global climate change in high latitudes resulting from local and tropical influences and uses climate models and atmospheric reanalyses as well as the polar version of the regional WRF model that is being developed, tested, and applied to climate variability and change problems in both polar regions. Dr. Bromwich’s e-mail is bromwich.1@osu.edu

Lesheng Bai, Senior Research Associate of Polar Meteorology Group, Byrd Polar and Climate Research Center of The Ohio State University. He focuses on the polar version of the regional WRF model that is being developed, tested, and applied to climate variability and change problems in both polar regions. His e-mail is bailesheng@hotmail.com

References

[1]
AlleyR B, EmanuelK A, ZhangF. ( 2019). Advances in weather prediction. Science, 363( 6425): 342– 344
CrossRef Google scholar
[2]
BauerP, ThorpeA, BrunetG. ( 2015). The quiet revolution of numerical weather prediction. Nature, 525( 7567): 47– 55
CrossRef Google scholar
[3]
BerrisfordP DeeD P PoliP BruggeR FieldingM FuentesM KållbergP W KobayashiS UppalaS SimmonsA ( 2011). The ERA-Interim archive Version 2.0. ECMWF
[4]
BracegirdleT J, MarshallG J. ( 2012). The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim, 25( 20): 7138– 7146
CrossRef Google scholar
[5]
BromwichD H, BaiL, BjarnasonG G. ( 2005). High-resolution regional climate simulations over iceland using Polar MM5*. Mon Weather Rev, 133( 12): 3527– 3547
CrossRef Google scholar
[6]
BromwichD H, HinesK M, BaiL. ( 2009). Development and testing of polar weather research and forecasting model: 2. Arctic Ocean. J Geophys Res, 114( D8): D08122
CrossRef Google scholar
[7]
BromwichD H, NicolasJ P, HinesK M, KayJ E, KeyE L, LazzaraM A, LubinD, McFarquharG M, GorodetskayaI V, GrosvenorD P, Lachlan-CopeT, van LipzigN P M. ( 2012). Tropospheric clouds in Antarctica. Rev Geophys, 50( 1): RG1004
CrossRef Google scholar
[8]
BromwichD H, NicolasJ P, MonaghanA J, LazzaraM A, KellerL M, WeidnerG A, WilsonA B. ( 2013a). Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 6( 2): 139– 145
CrossRef Google scholar
[9]
BromwichD H, NicolasJ P, MonaghanA J, LazzaraM A, KellerL M, WeidnerG A, WilsonA B. ( 2014). Erratum: corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 7( 1): 76
CrossRef Google scholar
[10]
BromwichD H OtienoF O HinesK M ManningK W ShiloE ( 2013b). Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic J Geophys Res D Atmospheres, 118( 2): 274− 292
[11]
BromwichD H, WilsonA B, BaiL, LiuZ, BarlageM, ShihC F, MaldonadoS, HinesK M, WangS H, WoollenJ, KuoB, LinH C, WeeT K, SerrezeM C, WalshJ E. ( 2018). The arctic system reanalysis, Version 2. Bull Am Meteorol Soc, 99( 4): 805– 828
CrossRef Google scholar
[12]
CassanoJ J, HigginsM E, SeefeldtM W. ( 2011). Performance of the weather research and forecasting model for month-long Pan-Arctic simulations. Mon Weather Rev, 139( 11): 3469– 3488
CrossRef Google scholar
[13]
ChenS Y, WeeT K, KuoY H, BromwichD H. ( 2014). An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon Weather Rev, 142( 11): 4187– 4206
CrossRef Google scholar
[14]
DeContoR M, PollardD. ( 2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531( 7596): 591– 597
CrossRef Google scholar
[15]
GlisanJ M, GutowskiW J Jr, CassanoJ J, HigginsM E. ( 2013). Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim, 26( 12): 3985– 3999
CrossRef Google scholar
[16]
GuoZ, BromwichD H, CassanoJ J. ( 2003). Evaluation of Polar MM5 simulations of antarctic atmospheric circulation. Mon Weather Rev, 131( 2): 384– 411
CrossRef Google scholar
[17]
HinesK M, BromwichD H. ( 2008). Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon Weather Rev, 136( 6): 1971– 1989
CrossRef Google scholar
[18]
HinesK M, BromwichD H. ( 2017). Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon Weather Rev, 145( 2): 521– 541
CrossRef Google scholar
[19]
HinesK M, BromwichD H, BaiL, BitzC M, PowersJ G, ManningK W. ( 2015). Sea ice enhancements to Polar WRF. Mon Weather Rev, 143( 6): 2363– 2385
CrossRef Google scholar
[20]
HinesK M, BromwichD H, BaiL S, BarlageM, SlaterA G. ( 2011). Development and testing of Polar WRF. Part III: Arctic land. J Clim, 24( 1): 26– 48
CrossRef Google scholar
[21]
HinesK M BromwichD H WangS H SilberI VerlindeJ LubinD( 2019). Microphysics of summer clouds in central west Antarctica simulated by Polar WRF and AMPS. Atmos Chem Phys Discuss,
[22]
IaconoM J, DelamereJ S, MlawerE J, ShephardM W, CloughS A, CollinsW D. ( 2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res, 113( D13): D13103
CrossRef Google scholar
[23]
JonesP D, ListerD H. ( 2015). Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int J Climatol, 35( 7): 1354– 1366
CrossRef Google scholar
[24]
JungT BauerP GoesslingH GordonN KlebeS BromwichD Doblas-ReyesF DayJ Fairall C HollandM IversenT LemkeP MillsB NurmiP PerovichD ReidP RenfrewI SmithG SvenssonG TolstykhM. ( 2015). The WWRP Polar Prediction Project (PPP). In: Seamless Prediction of The Earth System: From Minutes to Months, WMO-No. 1156, Geneva, WMO
[25]
KainJ S. ( 2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43( 1): 170– 181
CrossRef Google scholar
[26]
KennicuttM C 2nd, ChownS L, CassanoJ J, LiggettD, MassomR, PeckL S, RintoulS R, StoreyJ W V, VaughanD G, WilsonT J, SutherlandW J. ( 2014). Polar research: six priorities for Antarctic science. Nature, 512( 7512): 23– 25
CrossRef Google scholar
[27]
KennicuttM C II, ChownS L, CassanoJ J, LiggettD, PeckL S, MassomR, RintoulS R, StoreyJ, VaughanD G, WilsonT J, AllisonI, AytonJ, BadheR, BaesemanJ, BarrettP J, BellR E, BertlerN, BoS, BrandtA, BromwichD, CaryS C, ClarkM S, ConveyP, CostaE S, CowanD, DecontoR, DunbarR, ElfringC, EscutiaC, FrancisJ, FrickerH A, FukuchiM, GilbertN, GuttJ, HavermansC, HikD, HosieG, JonesC, KimY D, LeMaho Y, LeeS H, LeppeM, LeitchenkovG, LiX, LipenkovV, LochteK, López-MartínezJ, LüdeckeC, LyonsW, MarenssiS, MillerH, MorozovaP, NaishT, NayakS, RavindraR, RetamalesJ, RicciC A, Rogan-FinnemoreM, Ropert-CoudertY, SamahA A, SansonL, ScambosT, SchlossI R, ShiraishiK, SiegertM J, SimõesJ C, StoreyB, SparrowM D, WallD H, WalshJ C, WilsonG, WintherJ G, XavierJ C, YangH, SutherlandW J. ( 2015). A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci, 27( 1): 3– 18
CrossRef Google scholar
[28]
KennicuttM C II, KimY D, Rogan-FinnemoreM, AnandakrishnanS, ChownS L, ColwellS, CowanD, EscutiaC, FrenotY, HallJ, LiggettD, McdonaldA J, NixdorfU, SiegertM J, StoreyJ, WåhlinA, WeatherwaxA, WilsonG S, WilsonT, WoodingR, AckleyS, BiebowN, BlankenshipD, BoS, BaesemanJ, CárdenasC A, CassanoJ, DanhongC, DañobeitiaJ, FrancisJ, GuldahlJ, HashidaG, CorbalánL J, KlepikovA, LeeJ, LeppeM, LijunF, López-MartinezJ, MemolliM, MotoyoshiY, BuenoR M, NegreteJ, CárdenesM A O, SilvaM P, Ramos-GarciaS, SalaH, ShinH, ShijieX, ShiraishiK, StockingsT, TrotterS, VaughanD G, DeMenezes J V D U, VlasichV, WeijiaQ, WintherJ G, MillerH, RintoulS, YangH. ( 2016). Delivering 21st century Antarctic and Southern Ocean science. Antarct Sci, 28( 6): 407– 423
CrossRef Google scholar
[29]
MayewskiP A, MeredithM P, SummerhayesC P, TurnerJ, WorbyA, BarrettP J, CasassaG, BertlerN A N, BracegirdleT, Naveira GarabatoA C, BromwichD, CampbellH, HamiltonG S, LyonsW B, MaaschK A, AokiS, XiaoC, van OmmenT. ( 2009). State of the Antarctic and Southern Ocean climate system. Rev Geophys, 47( 1): RG1003
CrossRef Google scholar
[30]
Miguez-MachoG, StenchikovG L, RobockA. ( 2004). Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res D Atmosph, 109: D13104
CrossRef Google scholar
[31]
MonaghanA, BromwichD. ( 2008). Global warming at the poles. Nat Geosci, 1( 11): 728– 729
CrossRef Google scholar
[32]
NakanishiM, NiinoH. ( 2009). Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn, 87( 5): 895– 912
CrossRef Google scholar
[33]
NiuG Y, YangZ L, MitchellK E, ChenF, EkM B, BarlageM, KumarA, ManningK, NiyogiD, RoseroE, TewariM, XiaY. ( 2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res D Atmospheres, 116( D12): D12109
CrossRef Google scholar
[34]
OlsonJ B KenyonJ S AngevineW A BrownJ M PagowskiM SušeljK ( 2019). A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW
[35]
PowersJ G, KlempJ B, SkamarockW C, DavisC A, DudhiaJ, GillD O, CoenJ L, GochisD J, AhmadovR, PeckhamS E, GrellG A, MichalakesJ, TrahanS, BenjaminS G, AlexanderC R, DimegoG J, WangW, SchwartzC S, RomineG S, LiuZ, SnyderC, ChenF, BarlageM J, YuW, DudaM G. ( 2017). The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc, 98( 8): 1717– 1737
CrossRef Google scholar
[36]
PowersJ G, ManningK W, BromwichD H, CassanoJ J, CayetteA M. ( 2012). A decade of Antarctic science support through AMPS. Bull Am Meteorol Soc, 93( 11): 1699– 1712
CrossRef Google scholar
[37]
ScambosT A, BellR E, AlleyR B, AnandakrishnanS, BromwichD H, BruntK, ChristiansonK, CreytsT, DasS B, DeContoR, DutrieuxP, FrickerH A, HollandD, MacGregorJ, MedleyB, NicolasJ P, PollardD, SiegfriedM R, SmithA M, SteigE J, TruselL D, VaughanD G, YagerP L. ( 2017). How much, how fast? A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global Planet Change, 153: 16– 34
CrossRef Google scholar
[38]
ScottR C, NicolasJ P, BromwichD H, NorrisJ R, LubinD. ( 2019). Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J Clim, 32( 3): 665– 684
CrossRef Google scholar
[39]
UrbanM C, BocediG, HendryA P, MihoubJ B, Pe’erG, SingerA, BridleJ R, CrozierL G, DeMeester L, GodsoeW, GonzalezA, HellmannJ J, HoltR D, HuthA, JohstK, KrugC B, LeadleyP W, PalmerS C F, PantelJ H, SchmitzA, ZollnerP A, TravisJ M. ( 2016). Improving the forecast for biodiversity under climate change. Science, 353( 6304): aad8466
CrossRef Google scholar
[40]
WilsonA B, BromwichD H, HinesK M. ( 2011). Evaluation of Polar WRF forecasts on the Arctic system reanalysis domain: surface and upper air analysis. J Geophys Res, 116( D11): D11112
CrossRef Google scholar
[41]
WilsonA B, BromwichD H, HinesK M. ( 2012). Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. atmospheric hydrologic cycle. J Geophys Res D Atmosph, 117: D04107
CrossRef Google scholar
[42]
XueJ, BromwichD H, XiaoZ, BaiL. ( 2021). Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar WRF with 3DVAR. Q J R Meteorol Soc, 147( 740): 3806– 3834
CrossRef Google scholar
[43]
ZouX, BromwichD H, NicolasJ P, MontenegroA, WangS H. ( 2019). West Antarctic surface melt event of January 2016 facilitated by föhn warming. Q J R Meteorol Soc, 145( 719): 687– 704
CrossRef Google scholar

Acknowledgments

This research was supported by the Chinese Academy of Sciences (No. XDA20060501) and the National Natural Science Foundation of China (Grant No. 91937000) to the first two authors. The other co-authors were supported by the Office of Naval Research (ONR) (No. N00014-18-1-2361). We are grateful to the Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin-Madison and the OGIMET database for the surface observations. We also would like to thank University of Wyoming and the Antarctic Meteo-Climatological Observatory funded by the Italian National Program of Antarctic Research for the upper-air observation data. We appreciate the use of BSRN stations data for downwelling surface longwave and shortwave radiation. Thanks for the comments from the reviewers and editors that substantially improved this article. Contribution No. 1616 of Byrd Polar and Climate Research Center.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(12613 KB)

Accesses

Citations

Detail

Sections
Recommended

/