Warming hiatus of extreme temperature across China’s cold regions during 1998–2018

Luo MA , Ruijie LU , Dongxue CHEN

Front. Earth Sci. ›› 2022, Vol. 16 ›› Issue (4) : 846 -864.

PDF (15451KB)
Front. Earth Sci. ›› 2022, Vol. 16 ›› Issue (4) : 846 -864. DOI: 10.1007/s11707-021-0950-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Warming hiatus of extreme temperature across China’s cold regions during 1998–2018

Author information +
History +
PDF (15451KB)

Abstract

The recent hiatus in global warming has attracted significant attention, yet whether it is a widespread global and/or regional phenomenon remains controversial. Here, we investigate the response of extreme temperature changes since 1961 across China’s cold regions (CCR): Tibetan determine the spatiotemporal characteristics of extreme temperature changes across these cold regions using Mann-Kendall and wavelet transform coherence (WTC) analyses of data from 196 meteorological stations from 1961 to 2018. We further investigate the teleconnection between extreme temperatures and large-scale ocean-atmosphere circulation to determine the potential synoptic scale causes of the observed changes. The results revealed a significant warming slowdown in all extreme temperature indices across CCR from 1998 to 2018. In addition, extreme temperature indices in northwest cold region (NWC) and north cold region (NC) reveal a clear winter warming slowdown and even a significant cooling trend, yet only the cold index in Tibetan platean cold region (TPC) shows a warming hiatus. We conclude that the warming hiatus observed across these regions is primarily driven by extreme temperature index changes in winter. We also find that phase variations in the Atlantic Multi-decadal Oscillation (AMO) and Arctic Oscillation (AO) critically impact on the observed warming hiatus, but the specific atmospheric mechanisms are elusive and warrant further analysis and investigation.

Keywords

China’s cold regions / warming hiatus / wavelet transform coherence / ocean-atmosphere circulations

Cite this article

Download citation ▾
Luo MA, Ruijie LU, Dongxue CHEN. Warming hiatus of extreme temperature across China’s cold regions during 1998–2018. Front. Earth Sci., 2022, 16(4): 846-864 DOI:10.1007/s11707-021-0950-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander L V, Zhang X, Peterson T C, Caesar J, Gleason B, Klein Tank A M G, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res, 111(D5): D05109

[2]

An W, Hou S, Zhang W, Wu S, Xu H, Pang H, Wang Y, Liu Y. (2016). Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Sci Rep, 6(1): 32813

[3]

Balmaseda M A, Trenberth K E, Källén E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett, 40(9): 1754–1759

[4]

Bubeck P, Dillenardt L, Alfieri L, Feyen L, Thieken A H, Kellermann P. (2019). Global warming to increase flood risk on European railways. Clim Change, 155(1): 19–36

[5]

Caesar J, Alexander L V, Trewin B, Tse-ring K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay M M, Karmacharya J, Jayasinghearachchi D A, Sakkamart J, Soares E, Hung L T, Thuong L T, Hue C T, Dung N T T, Hung P V, Cuong H D, Cuong N M, Sirabaha S. (2011). Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol, 31(6): 791–801

[6]

Cai D, You Q, Fraedrich K, Guan Y. (2017). Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim, 30(3): 969–984

[7]

Chen H, Sun J. (2015). Changes in climate extreme events in China associated with warming. Int J Climatol, 35(10): 2735–2751

[8]

Chen R, Kang E, Ji X, Yang J, Yang Y. (2006). Cold regions in China. Cold Reg Sci Technol, 45(2): 95–102

[9]

Chen W, Dong B. (2018). Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols. Clim Dyn, 52(5−6): 3643–3660

[10]

Chen X, Tung K K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199): 897–903

[11]

Chen Y, Deng H, Li B, Li Z, Xu C. (2014). Abrupt change of temperature and precipitation extremes in the arid region of northwest China. Quat Int, 336: 35–43

[12]

CurtisSFairAWistowJValD VOvenK(2017). Impact of extreme weather events and climate change for health and social care systems. Environ Health, 16(S1 Suppl 1): 128

[13]

Deng H, Chen Y, Shi X, Li W, Wang H, Zhang S, Fang G. (2014). Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos Res, 138: 346–355

[14]

Diffenbaugh N S, Singh D, Mankin J S, Horton D E, Swain D L, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B. (2017). Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci USA, 114(19): 4881–4886

[15]

Ding Y, Zhang S, Zhao L, Li Z, Kang S. (2019a). Global warming weakening the inherent stability of glaciers and permafrost. Sci Bull (Beijing), 64(4): 245–253

[16]

Ding Z, Lu R, Wang Y. (2019b). Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ Res Lett, 14(2): 024005

[17]

Ding Z, Pu J, Meng L, Lu R, Wang Y, Li Y, Dong Y, Wang S. (2020). Asymmetric trends of extreme temperature over the Loess Plateau during 1998–2018. Int J Climatol, 41(S1): E1663–E1685

[18]

Ding Z, Wang Y, Lu R. (2018). An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos Res, 209(SEP): 103–114

[19]

Donat M G, Lowry A L, Alexander L V, O’Gorman P A, Maher N. (2016). More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang, 6(5): 508–513

[20]

Dong S, Sun Y, Aguilar E, Zhang X, Peterson T C, Song L, Zhang Y. (2017). Observed changes in temperature extremes over Asia and their attribution. Clim Dyn, 51(1−2): 339–353

[21]

Du Q, Zhang M, Wang S, Che C, Ma R, Ma Z. (2019). Changes in air temperature over China in response to the recent global warming hiatus. J Geogr Sci, 29(4): 496–516

[22]

Duan A, Xiao Z. (2015). Does the climate warming hiatus exist over the Tibetan Plateau?. Sci Rep, 5(1): 13711

[23]

EasterlingD RWehnerM F (2009). Is the climate warming or cooling? Geophys Res Lett, 36(8): L08706

[24]

England M H, Kajtar J B, Maher N. (2015). Robust warming projections despite the recent hiatus. Nat Clim Chang, 5(5): 394–396

[25]

England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang, 4(3): 222–227

[26]

Fenner D, Holtmann A, Krug A, Scherer D. (2019). Heat waves in Berlin and Potsdam, Germany – long-term trends and comparison of heat wave definitions from 1893 to 2017. Int J Climatol, 39(4): 2422–2437

[27]

Fu Q, Zhou Z, Li T, Liu D, Hou R, Cui S, Yan P. (2018). Spatiotemporal characteristics of droughts and floods in northeastern China and their impacts on agriculture. Stochastic Environ Res Risk Assess, 32(10): 2913–2931

[28]

Fyfe J C, Gillett N P, Zwiers F W. (2013). Overestimated global warming over the past 20 years. Nat Clim Chang, 3(9): 767–769

[29]

Fyfe J C, Meehl G A, England M H, Mann M E, Santer B D, Flato G M, Hawkins E, Gillett N P, Xie S P, Kosaka Y, Swart N C. (2016). Making sense of the early-2000s warming slowdown. Nat Clim Chang, 6(3): 224–228

[30]

Garfinkel C I, Son S W, Song K, Aquila V, Oman L D. (2017). Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys Res Lett, 44(1): 374–382

[31]

Gleisner H, Thejll P, Christiansen B, Nielsen J. (2015). Recent global warming hiatus dominated by low-latitude temperature trends in surface and troposphere data. Geophys Res Lett, 42(2): 510–517

[32]

Grinsted A, Moore J C, Jevrejeva S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys, 11(5/6): 561–566

[33]

Guo H, Bao A, Liu T, Jiapaer G, Ndayisaba F, Jiang L, Kurban A, De Maeyer P. (2018). Spatial and temporal characteristics of droughts in Central Asia during 1966−2015. Sci Total Environ, 624: 1523–1538

[34]

Hansen J, Sato M, Kharecha K, von Schuckmann K. (2011). Earth’s energy imbalance and implications. Atmos Chem Phys, 11(24): 13421–13449

[35]

Haywood J M, Jones A, Jones G S. (2014). The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett, 15(2): 92–96

[36]

Huang J, Xie Y, Guan X, Li D, Ji F. (2016). The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn, 48(1−2): 429–446

[37]

Huang J, Zhang X, Zhang Q, Lin Y, Hao M, Luo Y, Zhao Z, Yao Y, Chen X, Wang L, Nie S, Yin Y, Xu Y, Zhang J. (2017a). Recently amplified arctic warming has contributed to a continual global warming trend. Nat Clim Chang, 7(12): 875–879

[38]

Huang Q, Zhang Q, Singh V P, Shi P, Zheng Y. (2017b). Variations of dryness/wetness across China: changing properties, drought risks, and causes. Global Planet Change, 155: 1–12

[39]

IPCC (2014). Summary for Policymakers. In: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

[40]

Jevrejeva S, Moore J C, Grinsted A. (2003). Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Geophys Res D Atmospheres, 108(D21): 4677

[41]

Johnson N C, Xie S P, Kosaka Y, Li X. (2018). Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat Commun, 9(1): 1724

[42]

Karl T R, Arguez A, Huang B, Lawrimore J H, McMahon J R, Menne M J, Peterson T C, Vose R S, Zhang H M. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242): 1469–1472

[43]

Kaufmann R K, Kauppi H, Mann M L, Stock J H. (2011). Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci, 108(29): 11790–11793

[44]

Kerr R A. (2009). What happened to global warming? Scientists say just wait a bit.. Science, 326(5949): 28–29

[45]

Kosaka Y, Xie S P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467): 403–407

[46]

Li C, Stevens B, Marotzke J. (2015). Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys Res Lett, 42(19): 8131–8139

[47]

Li L, Zha Y. (2018). Mapping relative humidity, average and extreme temperature in hot summer over China. Sci Total Environ, 615: 875–881

[48]

Li X, Cheng G. (1999). A GIS-aided response model of high-altitude permafrost to global change. Sci China Ser D Earth Sci, 42(1): 72–79

[49]

Li X, You Q, Ren G, Wang S, Zhang Y, Yang J, Zheng G. (2019). Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int J Climatol, 39(4): 2186–2196

[50]

Li Z, Ding Y, Chen A, Zhang Z, Zhang S. (2020). The hiatus phenomenon and characteristics in the climate change in northwest China from 1960 to 2019. Acta Geogr Sin, 75(9): 1845–1859

[51]

LiZHeYWangPTheakstoneW HAnWWangXLuAZhangWCaoW(2012). Changes of daily climate extremes in southwestern China during 1961–2008. Global Planet Change, 80–81: 80–81

[52]

Liu Q, Wu X, Chen X, Yang B. (2015). Temporal and spatial variation characteristics of extreme temperature in the Pearl River Basin from 1960 to 2012. Journal of Natural Resources, 30(8): 1356–1366

[53]

McGregor S, Timmermann A, Stuecker M F, England M H, Merrifield M, Jin F F, Chikamoto Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Chang, 4(10): 888–892

[54]

Medhaug I, Stolpe M B, Fischer E M, Knutti R. (2017). Reconciling controversies about the ‘global warming hiatus’. Nature, 545(7652): 41–47

[55]

Meehl G A, Hu A, Arblaster J M, Fasullo J, Trenberth K E. (2013). Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific Oscillation. J Clim, 26(18): 7298–7310

[56]

Niu Z, Wang L, Fang L, Li J, Yao R. (2020). Analysis of spatiotemporal variability in temperature extremes in the Yellow and Yangtze River basins during 1961–2014 based on high-density gauge observations. Int J Climatol, 40(1): 1–21

[57]

Pakalidou N, Karacosta P. (2018). Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmos Res, 208: 106–115

[58]

Qin D, Ding Y, Xiao C, Kang S, Ren J, Yang J, Zhang S. (2018). Cryospheric science: research framework and disciplinary system. Natl Sci Rev, 5(2): 255–268

[59]

Rajaratnam B, Romano J, Tsiang M, Diffenbaugh N S. (2015). Debunking the climate hiatus. Clim Change, 133(2): 129–140

[60]

Ren G, Ding Y, Zhao Z, Zheng J, Wu T, Tang G, Xu Y. (2012). Recent progress in studies of climate change in China. Adv Atmos Sci, 29(5): 958–977

[61]

Risbey J S, Lewandowsky S, Langlais C, Monselesan D P, O’Kane T J, Oreskes N. (2014). Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Chang, 4(9): 835–840

[62]

Sen P K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc, 63(324): 1379–1389

[63]

Shen X, Jiang M, Lu X, Liu X, Liu B, Zhang J, Wang X, Tong S, Lei G, Wang S, Tong C, Fan H, Tian K, Wang X, Hu Y, Xie Y, Ma M, Zhang S, Cao C, Wang Z. (2021). Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci China Earth Sci, 64(7): 1115–1125

[64]

Shen X, Liu B, Jiang M, Lu X. (2020). Marshland loss warms local land surface temperature in China. Geophys Res Lett, 47(6): e2020GL087648

[65]

Shen X, Liu B, Lu X. (2018). Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus. J Geophys Res D Atmospheres, 123(8): 4073–4087

[66]

Shi J, Cui L, Ma Y, Du H, Wen K. (2018). Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos Res, 212: 259–272

[67]

SlingoJ(2013). The Recent Pause in Global Warming Parts 1–3 Rep. Exeter: The Met Office

[68]

Solomon S, Rosenlof K H, Portmann R W, Daniel J S, Davis S M, Sanford T J, Plattner G K. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970): 1219–1223

[69]

Song L, Wu R. (2019). Different cooperation of the Arctic Oscillation and the Madden-Julian Oscillation in the East Asian cold events during early and late winter. J Geophys Res D Atmospheres, 124(9): 4913–4931

[70]

Su Q, Dong B. (2019). Recent decadal changes in heat waves over China: drivers and mechanisms. J Clim, 32(14): 4215–4234

[71]

Sun X, Ren G, Ren Y, Fang Y, Liu Y, Xue X, Zhang P. (2018). A remarkable climate warming hiatus over northeast China since 1998. Theor Appl Climatol, 133(1−2): 579–594

[72]

Supari F, Tangang L, Juneng E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. Int J Climatol, 37(4): 1979–1997

[73]

Swain D L, Horton D E, Singh D, Diffenbaugh N S. (2016). Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci Adv, 2(4): e1501344

[74]

Tong S, Li X, Zhang J, Bao Y, Bao Y, Na L, Si A. (2019). Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017. Sci Total Environ, 649: 75–89

[75]

Torrence C, Compo G P. (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79(1): 61–78

[76]

TrenberthK E (2015). Has there been a hiatus? Science, 349(6249): 691–692

[77]

WangSZhangMWangBSunMLiX (2013). Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat Int, (313−314): 110−117

[78]

Wang Y, Ding Z, Ma Y. (2019). Spatial and temporal analysis of changes in temperature extremes in the non-monsoon region of China from 1961 to 2016. Theor Appl Climatol, 137(3−4): 2697–2713

[79]

Wang Y, Shen X, Jiang M, Tong S, Lu X. (2021). Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int J Appl Earth Obs Geoinf, 102: 102385

[80]

Wen X, Wu X, Gao M. (2017). Spatiotemporal variability of temperature and precipitation in Gansu Province (northwest China) during 1951–2015. Atmos Res, 197: 132–149

[81]

Winslow L A, Leach T H, Rose K C. (2018). Global lake response to the recent warming hiatus. Environ Res Lett, 13(5): 054005

[82]

YangZLiuXZengQChenZ(2000). Hydrology in Cold Regions of China. Beijing: Science Press

[83]

You Q, Jiang Z, Wang D, Pepin N, Kang S. (2018). Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim Dyn, 51(1−2): 355–369

[84]

You Q, Kang S, Pepin N, Yan Y. (2008). Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett, 35(4): L04704

[85]

You Q, Ren G, Fraedrich K, Kang S, Ren Y, Wang P. (2013). Winter temperature extremes in China and their possible causes. Int J Climatol, 33(6): 1444–1455

[86]

Zhang L. (2016). The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn, 47(9−10): 3157–3169

[87]

Zhang X, Alexander L, Hegerl G C, Jones P, Tank A K, Peterson T C, Trewin B, Zwiers F W. (2011). Index for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change, 2(6): 851–870

[88]

ZhouZShiHFuQLiTGanT YLiuSLiuK (2020). Is the cold region in northeast China still getting warmer under climate change impact? Atmos Res, 237: 104864

[89]

Zhu J, Huang G, Baetz B, Wang X, Cheng G. (2018). Climate warming will not decrease perceived low-temperature extremes in China. Clim Dyn, 52(9−10): 5641–5656

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (15451KB)

1573

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/