Warming hiatus of extreme temperature across China’s cold regions during 1998–2018
Luo MA, Ruijie LU, Dongxue CHEN
Warming hiatus of extreme temperature across China’s cold regions during 1998–2018
The recent hiatus in global warming has attracted significant attention, yet whether it is a widespread global and/or regional phenomenon remains controversial. Here, we investigate the response of extreme temperature changes since 1961 across China’s cold regions (CCR): Tibetan determine the spatiotemporal characteristics of extreme temperature changes across these cold regions using Mann-Kendall and wavelet transform coherence (WTC) analyses of data from 196 meteorological stations from 1961 to 2018. We further investigate the teleconnection between extreme temperatures and large-scale ocean-atmosphere circulation to determine the potential synoptic scale causes of the observed changes. The results revealed a significant warming slowdown in all extreme temperature indices across CCR from 1998 to 2018. In addition, extreme temperature indices in northwest cold region (NWC) and north cold region (NC) reveal a clear winter warming slowdown and even a significant cooling trend, yet only the cold index in Tibetan platean cold region (TPC) shows a warming hiatus. We conclude that the warming hiatus observed across these regions is primarily driven by extreme temperature index changes in winter. We also find that phase variations in the Atlantic Multi-decadal Oscillation (AMO) and Arctic Oscillation (AO) critically impact on the observed warming hiatus, but the specific atmospheric mechanisms are elusive and warrant further analysis and investigation.
China’s cold regions / warming hiatus / wavelet transform coherence / ocean-atmosphere circulations
[1] |
Alexander L V, Zhang X, Peterson T C, Caesar J, Gleason B, Klein Tank A M G, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res, 111(D5): D05109
CrossRef
Google scholar
|
[2] |
An W, Hou S, Zhang W, Wu S, Xu H, Pang H, Wang Y, Liu Y. (2016). Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Sci Rep, 6(1): 32813
CrossRef
Google scholar
|
[3] |
Balmaseda M A, Trenberth K E, Källén E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett, 40(9): 1754–1759
CrossRef
Google scholar
|
[4] |
Bubeck P, Dillenardt L, Alfieri L, Feyen L, Thieken A H, Kellermann P. (2019). Global warming to increase flood risk on European railways. Clim Change, 155(1): 19–36
CrossRef
Google scholar
|
[5] |
Caesar J, Alexander L V, Trewin B, Tse-ring K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay M M, Karmacharya J, Jayasinghearachchi D A, Sakkamart J, Soares E, Hung L T, Thuong L T, Hue C T, Dung N T T, Hung P V, Cuong H D, Cuong N M, Sirabaha S. (2011). Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol, 31(6): 791–801
CrossRef
Google scholar
|
[6] |
Cai D, You Q, Fraedrich K, Guan Y. (2017). Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim, 30(3): 969–984
CrossRef
Google scholar
|
[7] |
Chen H, Sun J. (2015). Changes in climate extreme events in China associated with warming. Int J Climatol, 35(10): 2735–2751
CrossRef
Google scholar
|
[8] |
Chen R, Kang E, Ji X, Yang J, Yang Y. (2006). Cold regions in China. Cold Reg Sci Technol, 45(2): 95–102
CrossRef
Google scholar
|
[9] |
Chen W, Dong B. (2018). Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols. Clim Dyn, 52(5−6): 3643–3660
|
[10] |
Chen X, Tung K K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199): 897–903
CrossRef
Google scholar
|
[11] |
Chen Y, Deng H, Li B, Li Z, Xu C. (2014). Abrupt change of temperature and precipitation extremes in the arid region of northwest China. Quat Int, 336: 35–43
CrossRef
Google scholar
|
[12] |
CurtisSFairAWistowJValD VOvenK(2017). Impact of extreme weather events and climate change for health and social care systems. Environ Health, 16(S1 Suppl 1): 128
|
[13] |
Deng H, Chen Y, Shi X, Li W, Wang H, Zhang S, Fang G. (2014). Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos Res, 138: 346–355
CrossRef
Google scholar
|
[14] |
Diffenbaugh N S, Singh D, Mankin J S, Horton D E, Swain D L, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B. (2017). Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci USA, 114(19): 4881–4886
CrossRef
Google scholar
|
[15] |
Ding Y, Zhang S, Zhao L, Li Z, Kang S. (2019a). Global warming weakening the inherent stability of glaciers and permafrost. Sci Bull (Beijing), 64(4): 245–253
CrossRef
Google scholar
|
[16] |
Ding Z, Lu R, Wang Y. (2019b). Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ Res Lett, 14(2): 024005
CrossRef
Google scholar
|
[17] |
Ding Z, Pu J, Meng L, Lu R, Wang Y, Li Y, Dong Y, Wang S. (2020). Asymmetric trends of extreme temperature over the Loess Plateau during 1998–2018. Int J Climatol, 41(S1): E1663–E1685
|
[18] |
Ding Z, Wang Y, Lu R. (2018). An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos Res, 209(SEP): 103–114
CrossRef
Google scholar
|
[19] |
Donat M G, Lowry A L, Alexander L V, O’Gorman P A, Maher N. (2016). More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang, 6(5): 508–513
CrossRef
Google scholar
|
[20] |
Dong S, Sun Y, Aguilar E, Zhang X, Peterson T C, Song L, Zhang Y. (2017). Observed changes in temperature extremes over Asia and their attribution. Clim Dyn, 51(1−2): 339–353
|
[21] |
Du Q, Zhang M, Wang S, Che C, Ma R, Ma Z. (2019). Changes in air temperature over China in response to the recent global warming hiatus. J Geogr Sci, 29(4): 496–516
CrossRef
Google scholar
|
[22] |
Duan A, Xiao Z. (2015). Does the climate warming hiatus exist over the Tibetan Plateau?. Sci Rep, 5(1): 13711
CrossRef
Google scholar
|
[23] |
EasterlingD RWehnerM F (2009). Is the climate warming or cooling? Geophys Res Lett, 36(8): L08706
|
[24] |
England M H, Kajtar J B, Maher N. (2015). Robust warming projections despite the recent hiatus. Nat Clim Chang, 5(5): 394–396
CrossRef
Google scholar
|
[25] |
England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang, 4(3): 222–227
CrossRef
Google scholar
|
[26] |
Fenner D, Holtmann A, Krug A, Scherer D. (2019). Heat waves in Berlin and Potsdam, Germany – long-term trends and comparison of heat wave definitions from 1893 to 2017. Int J Climatol, 39(4): 2422–2437
CrossRef
Google scholar
|
[27] |
Fu Q, Zhou Z, Li T, Liu D, Hou R, Cui S, Yan P. (2018). Spatiotemporal characteristics of droughts and floods in northeastern China and their impacts on agriculture. Stochastic Environ Res Risk Assess, 32(10): 2913–2931
CrossRef
Google scholar
|
[28] |
Fyfe J C, Gillett N P, Zwiers F W. (2013). Overestimated global warming over the past 20 years. Nat Clim Chang, 3(9): 767–769
CrossRef
Google scholar
|
[29] |
Fyfe J C, Meehl G A, England M H, Mann M E, Santer B D, Flato G M, Hawkins E, Gillett N P, Xie S P, Kosaka Y, Swart N C. (2016). Making sense of the early-2000s warming slowdown. Nat Clim Chang, 6(3): 224–228
CrossRef
Google scholar
|
[30] |
Garfinkel C I, Son S W, Song K, Aquila V, Oman L D. (2017). Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys Res Lett, 44(1): 374–382
CrossRef
Google scholar
|
[31] |
Gleisner H, Thejll P, Christiansen B, Nielsen J. (2015). Recent global warming hiatus dominated by low-latitude temperature trends in surface and troposphere data. Geophys Res Lett, 42(2): 510–517
CrossRef
Google scholar
|
[32] |
Grinsted A, Moore J C, Jevrejeva S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys, 11(5/6): 561–566
CrossRef
Google scholar
|
[33] |
Guo H, Bao A, Liu T, Jiapaer G, Ndayisaba F, Jiang L, Kurban A, De Maeyer P. (2018). Spatial and temporal characteristics of droughts in Central Asia during 1966−2015. Sci Total Environ, 624: 1523–1538
CrossRef
Google scholar
|
[34] |
Hansen J, Sato M, Kharecha K, von Schuckmann K. (2011). Earth’s energy imbalance and implications. Atmos Chem Phys, 11(24): 13421–13449
CrossRef
Google scholar
|
[35] |
Haywood J M, Jones A, Jones G S. (2014). The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett, 15(2): 92–96
CrossRef
Google scholar
|
[36] |
Huang J, Xie Y, Guan X, Li D, Ji F. (2016). The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn, 48(1−2): 429–446
|
[37] |
Huang J, Zhang X, Zhang Q, Lin Y, Hao M, Luo Y, Zhao Z, Yao Y, Chen X, Wang L, Nie S, Yin Y, Xu Y, Zhang J. (2017a). Recently amplified arctic warming has contributed to a continual global warming trend. Nat Clim Chang, 7(12): 875–879
CrossRef
Google scholar
|
[38] |
Huang Q, Zhang Q, Singh V P, Shi P, Zheng Y. (2017b). Variations of dryness/wetness across China: changing properties, drought risks, and causes. Global Planet Change, 155: 1–12
CrossRef
Google scholar
|
[39] |
IPCC
|
[40] |
Jevrejeva S, Moore J C, Grinsted A. (2003). Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Geophys Res D Atmospheres, 108(D21): 4677
CrossRef
Google scholar
|
[41] |
Johnson N C, Xie S P, Kosaka Y, Li X. (2018). Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat Commun, 9(1): 1724
CrossRef
Google scholar
|
[42] |
Karl T R, Arguez A, Huang B, Lawrimore J H, McMahon J R, Menne M J, Peterson T C, Vose R S, Zhang H M. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242): 1469–1472
CrossRef
Google scholar
|
[43] |
Kaufmann R K, Kauppi H, Mann M L, Stock J H. (2011). Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci, 108(29): 11790–11793
CrossRef
Google scholar
|
[44] |
Kerr R A. (2009). What happened to global warming? Scientists say just wait a bit.. Science, 326(5949): 28–29
CrossRef
Google scholar
|
[45] |
Kosaka Y, Xie S P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467): 403–407
CrossRef
Google scholar
|
[46] |
Li C, Stevens B, Marotzke J. (2015). Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys Res Lett, 42(19): 8131–8139
CrossRef
Google scholar
|
[47] |
Li L, Zha Y. (2018). Mapping relative humidity, average and extreme temperature in hot summer over China. Sci Total Environ, 615: 875–881
CrossRef
Google scholar
|
[48] |
Li X, Cheng G. (1999). A GIS-aided response model of high-altitude permafrost to global change. Sci China Ser D Earth Sci, 42(1): 72–79
CrossRef
Google scholar
|
[49] |
Li X, You Q, Ren G, Wang S, Zhang Y, Yang J, Zheng G. (2019). Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int J Climatol, 39(4): 2186–2196
CrossRef
Google scholar
|
[50] |
Li Z, Ding Y, Chen A, Zhang Z, Zhang S. (2020). The hiatus phenomenon and characteristics in the climate change in northwest China from 1960 to 2019. Acta Geogr Sin, 75(9): 1845–1859
|
[51] |
LiZHeYWangPTheakstoneW HAnWWangXLuAZhangWCaoW(2012). Changes of daily climate extremes in southwestern China during 1961–2008. Global Planet Change, 80–81: 80–81
|
[52] |
Liu Q, Wu X, Chen X, Yang B. (2015). Temporal and spatial variation characteristics of extreme temperature in the Pearl River Basin from 1960 to 2012. Journal of Natural Resources, 30(8): 1356–1366
|
[53] |
McGregor S, Timmermann A, Stuecker M F, England M H, Merrifield M, Jin F F, Chikamoto Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Chang, 4(10): 888–892
CrossRef
Google scholar
|
[54] |
Medhaug I, Stolpe M B, Fischer E M, Knutti R. (2017). Reconciling controversies about the ‘global warming hiatus’. Nature, 545(7652): 41–47
CrossRef
Google scholar
|
[55] |
Meehl G A, Hu A, Arblaster J M, Fasullo J, Trenberth K E. (2013). Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific Oscillation. J Clim, 26(18): 7298–7310
CrossRef
Google scholar
|
[56] |
Niu Z, Wang L, Fang L, Li J, Yao R. (2020). Analysis of spatiotemporal variability in temperature extremes in the Yellow and Yangtze River basins during 1961–2014 based on high-density gauge observations. Int J Climatol, 40(1): 1–21
CrossRef
Google scholar
|
[57] |
Pakalidou N, Karacosta P. (2018). Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmos Res, 208: 106–115
CrossRef
Google scholar
|
[58] |
Qin D, Ding Y, Xiao C, Kang S, Ren J, Yang J, Zhang S. (2018). Cryospheric science: research framework and disciplinary system. Natl Sci Rev, 5(2): 255–268
CrossRef
Google scholar
|
[59] |
Rajaratnam B, Romano J, Tsiang M, Diffenbaugh N S. (2015). Debunking the climate hiatus. Clim Change, 133(2): 129–140
CrossRef
Google scholar
|
[60] |
Ren G, Ding Y, Zhao Z, Zheng J, Wu T, Tang G, Xu Y. (2012). Recent progress in studies of climate change in China. Adv Atmos Sci, 29(5): 958–977
CrossRef
Google scholar
|
[61] |
Risbey J S, Lewandowsky S, Langlais C, Monselesan D P, O’Kane T J, Oreskes N. (2014). Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Chang, 4(9): 835–840
CrossRef
Google scholar
|
[62] |
Sen P K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc, 63(324): 1379–1389
CrossRef
Google scholar
|
[63] |
Shen X, Jiang M, Lu X, Liu X, Liu B, Zhang J, Wang X, Tong S, Lei G, Wang S, Tong C, Fan H, Tian K, Wang X, Hu Y, Xie Y, Ma M, Zhang S, Cao C, Wang Z. (2021). Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci China Earth Sci, 64(7): 1115–1125
CrossRef
Google scholar
|
[64] |
Shen X, Liu B, Jiang M, Lu X. (2020). Marshland loss warms local land surface temperature in China. Geophys Res Lett, 47(6): e2020GL087648
|
[65] |
Shen X, Liu B, Lu X. (2018). Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus. J Geophys Res D Atmospheres, 123(8): 4073–4087
CrossRef
Google scholar
|
[66] |
Shi J, Cui L, Ma Y, Du H, Wen K. (2018). Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos Res, 212: 259–272
CrossRef
Google scholar
|
[67] |
SlingoJ(2013). The Recent Pause in Global Warming Parts 1–3 Rep. Exeter: The Met Office
|
[68] |
Solomon S, Rosenlof K H, Portmann R W, Daniel J S, Davis S M, Sanford T J, Plattner G K. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970): 1219–1223
CrossRef
Google scholar
|
[69] |
Song L, Wu R. (2019). Different cooperation of the Arctic Oscillation and the Madden-Julian Oscillation in the East Asian cold events during early and late winter. J Geophys Res D Atmospheres, 124(9): 4913–4931
CrossRef
Google scholar
|
[70] |
Su Q, Dong B. (2019). Recent decadal changes in heat waves over China: drivers and mechanisms. J Clim, 32(14): 4215–4234
CrossRef
Google scholar
|
[71] |
Sun X, Ren G, Ren Y, Fang Y, Liu Y, Xue X, Zhang P. (2018). A remarkable climate warming hiatus over northeast China since 1998. Theor Appl Climatol, 133(1−2): 579–594
CrossRef
Google scholar
|
[72] |
Supari F, Tangang L, Juneng E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. Int J Climatol, 37(4): 1979–1997
CrossRef
Google scholar
|
[73] |
Swain D L, Horton D E, Singh D, Diffenbaugh N S. (2016). Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci Adv, 2(4): e1501344
CrossRef
Google scholar
|
[74] |
Tong S, Li X, Zhang J, Bao Y, Bao Y, Na L, Si A. (2019). Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017. Sci Total Environ, 649: 75–89
CrossRef
Google scholar
|
[75] |
Torrence C, Compo G P. (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79(1): 61–78
CrossRef
Google scholar
|
[76] |
TrenberthK E (2015). Has there been a hiatus? Science, 349(6249): 691–692
|
[77] |
WangSZhangMWangBSunMLiX (2013). Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat Int, (313−314): 110−117
|
[78] |
Wang Y, Ding Z, Ma Y. (2019). Spatial and temporal analysis of changes in temperature extremes in the non-monsoon region of China from 1961 to 2016. Theor Appl Climatol, 137(3−4): 2697–2713
CrossRef
Google scholar
|
[79] |
Wang Y, Shen X, Jiang M, Tong S, Lu X. (2021). Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int J Appl Earth Obs Geoinf, 102: 102385
CrossRef
Google scholar
|
[80] |
Wen X, Wu X, Gao M. (2017). Spatiotemporal variability of temperature and precipitation in Gansu Province (northwest China) during 1951–2015. Atmos Res, 197: 132–149
CrossRef
Google scholar
|
[81] |
Winslow L A, Leach T H, Rose K C. (2018). Global lake response to the recent warming hiatus. Environ Res Lett, 13(5): 054005
CrossRef
Google scholar
|
[82] |
YangZLiuXZengQChenZ(2000). Hydrology in Cold Regions of China. Beijing: Science Press
|
[83] |
You Q, Jiang Z, Wang D, Pepin N, Kang S. (2018). Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim Dyn, 51(1−2): 355–369
CrossRef
Google scholar
|
[84] |
You Q, Kang S, Pepin N, Yan Y. (2008). Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett, 35(4): L04704
CrossRef
Google scholar
|
[85] |
You Q, Ren G, Fraedrich K, Kang S, Ren Y, Wang P. (2013). Winter temperature extremes in China and their possible causes. Int J Climatol, 33(6): 1444–1455
CrossRef
Google scholar
|
[86] |
Zhang L. (2016). The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn, 47(9−10): 3157–3169
CrossRef
Google scholar
|
[87] |
Zhang X, Alexander L, Hegerl G C, Jones P, Tank A K, Peterson T C, Trewin B, Zwiers F W. (2011). Index for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change, 2(6): 851–870
CrossRef
Google scholar
|
[88] |
ZhouZShiHFuQLiTGanT YLiuSLiuK (2020). Is the cold region in northeast China still getting warmer under climate change impact? Atmos Res, 237: 104864
|
[89] |
Zhu J, Huang G, Baetz B, Wang X, Cheng G. (2018). Climate warming will not decrease perceived low-temperature extremes in China. Clim Dyn, 52(9−10): 5641–5656
|
/
〈 | 〉 |