Biogenic gas generation effects on anthracite molecular structure and pore structure

Aikuan WANG , Pei SHAO , Qinghui WANG

Front. Earth Sci. ›› 2021, Vol. 15 ›› Issue (2) : 272 -282.

PDF (1698KB)
Front. Earth Sci. ›› 2021, Vol. 15 ›› Issue (2) : 272 -282. DOI: 10.1007/s11707-021-0925-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Biogenic gas generation effects on anthracite molecular structure and pore structure

Author information +
History +
PDF (1698KB)

Abstract

This study carries out a simulated experiment of biogenic gas generation and studies the effects of gas generation on the pore structure and molecular structure of anthracite by mercury intrusion porosimetry, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The results show that methanogenic bacteria can produce biogenic gas from anthracite. CO2 and CH4 are the main components of the generated biogas. After generation, some micropores (<10 nm) and transitional pores (10–100 nm) in the coal samples transform into large pores. In the high-pressure stage (pressure>100 MPa) of the mercury intrusion test, the specific surface area decreases by 19.79% compared with that of raw coal, and the pore volume increases by 7.25% in total. Microbial action on the molecular structure causes changes in the pore reconstruction. The FT-IR data show that the side chains and hydroxyl groups of the coal molecular structure in coal are easily metabolized by methanogenic bacteria and partially oxidized to form carboxylic acids. In addition, based on the XRD data, the aromatic lamellar structure in the coal is changed by microorganisms; it decreases in lateral size (La) and stacking thickness (Lc). This study enriches the theory of biogenic coalbed gas generation and provides a pathway for enhancing the permeability of high-rank coal reservoirs.

Graphical abstract

Keywords

biogenic gas / anthracite / pore structure / molecular structure

Cite this article

Download citation ▾
Aikuan WANG, Pei SHAO, Qinghui WANG. Biogenic gas generation effects on anthracite molecular structure and pore structure. Front. Earth Sci., 2021, 15(2): 272-282 DOI:10.1007/s11707-021-0925-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beckmann S, Krüger M, Engelen B, Gorbushina A A, Cypionka H (2011). Role of Bacteria, Archaea and Fungi involved in methane release in abandoned coalmines. Geomicrobiol J, 28(4): 347–358

[2]

Chakhmakhchev A (2007). Worldwide coalbed methane overview, In: SPE hydrocarbon Economics and Evaluation Symposium, SPE. Soc Petrol Eng, 17–23

[3]

Chen S, Tang D, Tao S, Xu H, Li S, Zhao J, Cui Y, Li Z (2018a). Characteristics of in-situ stress distribution and its significance on the coalbed methane (CBM) development in Fanzhuang-Zhengzhuang Block, Southern Qinshui Basin, China. J Petrol Sci Eng, 161: 108–120

[4]

Chen Y L, Qin Y, Wei C T, Huang L L, Shi Q M, Wu C F, Zhang X Y (2018b). Porosity changes in progressively pulverized anthracite subsamples: implications for the study of closed pore distribution in coals. Fuel, 225: 612–622

[5]

Ritter D, Vinson DBarnhart E, Akob D, Fields M, Cunningham F, Orem W, McIntosh J (2015). Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges. Int J Coal Geol, 146: 28–41

[6]

Faiz M, Stalker L, Sherwood N, Saghafi A, Wold M, Barclay S, Choudhury J, Barker W, Wang I (2003). Bio-enhancement of coal bed methane resources in the southern Sydney Basin. APPEA J, 43(1): 595–610

[7]

Fu X H, Zhang X D, Wei C T (2021). Review of research on testing, simulation and prediction of coal bed methane content. J China U Min Techn, 50(1): 13–31 (in Chinese)

[8]

Fu H, Yan D, Yang S, Wang X, Zhang Z, Sun M (2020). Characteristics of in situ stress and its influence on coalbed methane development: a case study in the eastern part of the southern Junggar Basin, NW China. Energy Sci Eng, 8(2): 515–529

[9]

Gao L, Brassell S C, Mastalerz M, Schimmelmann A (2013). Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA. Int J Coal Geol, 107: 152–164

[10]

Green M S, Flanegan K C, Gilcrease P C (2008). Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, USA. Int J Coal Geol, 76(1–2): 34–45

[11]

Guo Y T, Bustin M R (1998). Micro-FTIR spectroscopy of liptinite macerals in coal. Int J Coal Geol, 36(3–4): 259–275

[12]

Haider R, Ghauri M A, SanFilipo J R, Jones E J, Orem W H, Tatu C A, Akhtar K, Akhtar N (2013). Fungal degradation of coal as a pretreatment for methane production. Fuel, 104: 717–725

[13]

Ibarra J V, Moliner R, Bonet A J (1994). FT-IR investigation on char formation during the early stages of coal pyrolysis. Fuel, 73(6): 918–924

[14]

Jones E J P, Voytek M A, Corum M D, Orem W H (2010). Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol, 76(21): 7013–7022

[15]

Li Y H, Lu G Q, Rudolph V (1999). Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry. Part Part Syst Charact, 16(1): 25–31

[16]

Liu A H, Fu X H, Luo B, Luo P, Jiao C (2013). Comprehensive analysis of CBM recovery inLhigh rank coal reservoir of Jincheng area. Int J Min Sci Technol, 23(3): 447–452

[17]

Liu Y, Zhu Y, Liu S, Chen S, Li W, Wang Y (2018). Molecular structure controls on micropore evolution in coal vitrinite during coalification. Int J Coal Geol, 199: 19–30

[18]

Miyazaki S (2005). Coalbed methane growing rapidly as Australia gas supply diversifies. Oil Gas J, 103(28): 32–36

[19]

Opara A, Adams D J, Free M L, McLennan J, Hamilton J (2012). Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int J Coal Geol, 96–97: 1–8

[20]

Penner T J, Foght J M, Budwill K (2010). Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol, 82(1–2): 81–93

[21]

Qin Y, Moore T A, Shen J, Yang Z B, Shen Y L, Wang G (2018). Resources and geology of coalbed methane in China: a review. Int Geol Rev, 60(5–6): 777–812

[22]

Shao P, Wang A, Wang W F (2018). Experimental simulation of biogenic coalbed gas generation from lignite and high-volatile bituminous coals. Fuel, 219: 111–119

[23]

Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan A V, Wawrik B, Turich C, Ashby M (2011). Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci, 39(1): 617–656

[24]

Wang A K, Shao P (2019). Generation processes and geochemical analysis of simulated biogenic coalbed methane from lignite. Geochem Int, 57(12): 1295–1305

[25]

Wang B, Tai C, Wu L, Chen L, Liu J, Hu B, Song D (2017). Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol, 173: 84–93

[26]

Warwick P D, Breland F C Jr, Hackley P C (2008). Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, USA. Int J Coal Geol, 76(1–2): 119–137

[27]

Xia D P, Guo H Y, Ma J Q, Si Q, Su X B (2014). Impact of biogenic methane metabolism on pore structure of coals. Nat Gas Geosci, 25(07): 1097–1102 (in Chinese)

[28]

Yao Y, Liu D, Qiu Y (2013). Variable gas content, saturation, and accumulation characteristics of Weibei coalbed methane pilot-production field in the southeastern Ordos Basin, China. AAPG Bull, 97(8): 1371–1393

[29]

Yoon S P, Jeon J Y, Lim H S (2016). Stimulation of biogenic methane generation from lignite through supplying an external substrate. Int J Coal Geol, 162: 39–44

[30]

Yun J, Xu F Y, Liu L, Zhong N N, Wu X B (2012). New progress and future prospects of CBM exploration and development in China. Int J Min Sci Technol, 22(3): 363–369

[31]

Zheng Q R, Zeng F G, Zhang S T (2011). FT-IR study on structure evolution of middle maturate coals. Journal of China Coal Society, 36(03): 481–486 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1698KB)

1126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/