Evaluation of forecast performance for Super Typhoon Lekima in 2019
Guomin CHEN , Xiping ZHANG , Qing CAO , Zhihua ZENG
Front. Earth Sci. ›› 2022, Vol. 16 ›› Issue (1) : 17 -33.
Evaluation of forecast performance for Super Typhoon Lekima in 2019
The predictions for Super Typhoon Lekima (2019) have been evaluated from official forecasts, global models, regional models and ensemble prediction systems (EPSs) at lead times of 1–5 days. Track errors from most deterministic forecasts are smaller than their annual mean errors in 2019. Compared to the propagation speed, the propagation direction of Lekima (2019) was much easier to determine for the official agency and numerical weather prediction (NWP) models. The National Centers for Environmental Prediction Global Ensemble Forecast System (NCEP-GEFS), Japan Meteorological Agency Global Ensemble Prediction System (JMA-GEPS) and Meteorological Service of Canada Ensemble System (MSC-CENS) are underdispersed, and the Shanghai Typhoon Institute Typhoon Ensemble Data Assimilation and Prediction System (STI-TEDAPS) is overdispersed, while the ensemble prediction system from European Centre for Medium-Range Weather Forecasts (ECMWF) shows adequate dispersion at all lead times. Most deterministic forecasting methods underestimated the intensity of Lekima (2019), especially for the rapid intensification period after Lekima (2019) entered the East China Sea. All of the deterministic forecasts performed well at predicting the first landfall point at Wenling, Zhejiang Province with a lead time of 24 and 48 h.
Typhoon Lekima (2019) / track / intensity / landfall point / forecast verification
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
Higher Education Press
/
| 〈 |
|
〉 |