
PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks
Bo HE, Jun LIU, Peng ZHAO, Jingfeng WANG
Front. Earth Sci. ›› 2021, Vol. 15 ›› Issue (4) : 803-816.
PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks
A validated particle flow code (PFC2D)-based model was developed to investigate the indirect tensile mechanical behavior of shale containing two central parallel cracks under Brazilian splitting test conditions. The results show that preexisting cracks have a significant and insignificant influence on the tensile strength of shale under LPL and LVL conditions, respectively. When L≥10 mm, changing the L and H values has little effect on the tensile strength of shale. However, the inclusion of preexisting cracks have a positive effect on reducing the anisotropy of the shale specimens, and in the case of an L/D ratio of 0.3, the shale anisotropy is the lowest. Four failure modes were formed at different β and θ values under LPL conditions. In the case of β≥60°, the failure mode is mainly affected by β, and when β≤45°, the failure mode is more complicated than in the case of β≥60°. Only three major failure modes were observed under LVL conditions; in the case of 45°≤β≤75° and θ≤30°, the most complex failure mode occurred.
anisotropy / preexisting cracks / tensile strength / mechanical behavior / PFC2D
[1] |
Cai M (2013). Fracture initiation and propagation in a Brazilian disc with a plane interface: a numerical study. Rock Mech Rock Eng, 46(2): 289–302
CrossRef
Google scholar
|
[2] |
Cai M, Kaiser P K (2004). Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min, 41(3): 450–451
CrossRef
Google scholar
|
[3] |
Chen C S, Pan E, Amadei B (1998). Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min, 35(1): 43–61
CrossRef
Google scholar
|
[4] |
Claesson J, Bohloli B (2002). Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min, 39(8): 991–1004
CrossRef
Google scholar
|
[5] |
Potyondy D O, Cundall P A (2004). A bonded-particle model for rock. Int J Rock Mech Min, 41(8): 1329–1364
CrossRef
Google scholar
|
[6] |
Dong S M (2008). Theoretical analysis of the effects of relative crack length and loading angle on the experimental results for cracked Brazilian disk testing. Eng Fract Mech, 75(8): 2575–2581
CrossRef
Google scholar
|
[7] |
Fowell R J, Xu C (1994). The use of the cracked Brazilian disc geometry for rock fracture investigations. Int J Rock Mech Min Sci Geomech Abstr, 31(6): 571–579
CrossRef
Google scholar
|
[8] |
Fowell R J, Xu C, Dowd P A (2006). An update on the fracture toughness testing methods related to the cracked chevron-notched brazilian disk (CCNBD) specimen. Pure Appl Geophys, 163(5–6): 1047–1057
CrossRef
Google scholar
|
[9] |
Ghazvinian A, Nejati H R, Sarfarazi V, Hadei M R (2013). Mixed mode crack propagation in low brittle rock-like materials. Arab J Geosci, 6(11): 4435–4444
CrossRef
Google scholar
|
[10] |
Guo H, Aziz H I, Schmidt L C (1993). Rock fracture-toughness determination by the Brazilian test. Eng Geol, 33(3): 177–188
CrossRef
Google scholar
|
[11] |
Haeri H, Khaloo A, Marji M F (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arab J Geosci, 8: 5897–5908
CrossRef
Google scholar
|
[12] |
Haeri H, Shahriar K, Fatehimarji M, Moarefvand P (2014a). On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading. Lat AM J Solids Stru, 11(8): 1400–1416
CrossRef
Google scholar
|
[13] |
Haeri H, Shahriar K, Marji M F, Moarefvand P (2014b). Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock Mech Min, 67: 20–28
CrossRef
Google scholar
|
[14] |
ISRM (1978). Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr, 15(3): 99–103
CrossRef
Google scholar
|
[15] |
Li D Y, Wong Y E (2013). The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng, 46(2): 269–287
CrossRef
Google scholar
|
[16] |
Li L C, Li S H, Tang C A (2014). Fracture spacing behavior in layered rocks subjected to different driving forces: a numerical study based on fracture infilling process. Front Earth Sci, 8(4): 472–489
CrossRef
Google scholar
|
[17] |
Liu J, Xie L Z, He B, Gan Q, Zhao P (2021). Influence of anisotropic and heterogeneous permeability coupled with in-situ stress on CO2 sequestration with simultaneous enhanced gas recovery in shale: quantitative modeling and case study. Int J Greenh Gas Control, 104: 103208
CrossRef
Google scholar
|
[18] |
Mellor M, Hawkes I (1971). Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol, 5(3): 173–225
CrossRef
Google scholar
|
[19] |
Park B, Min K B (2015). Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min, 76: 243–255
CrossRef
Google scholar
|
[20] |
Park B, Min K B, Thompson N, Horsrud P (2018). Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min, 110: 120–132
CrossRef
Google scholar
|
[21] |
Rocco C, Guinea G V, Planas J, Elices M (1999). Size effect and boundary conditions in the brazilian test: theoretical analysis. Mater Struct, 32: 437–444
CrossRef
Google scholar
|
[22] |
Saksala T, Hokka M, Kuokkala V T, Mäkinen J (2013). Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int J Rock Mech Min, 59: 128–138
CrossRef
Google scholar
|
[23] |
Sarfarazi V, Haeri H, Marji M F, Zhu Z M (2017). Fracture mechanism of Brazilian discs with multiple parallel notches using PFC2D. Period Polytech Civ Eng, 61(4): 653–663
CrossRef
Google scholar
|
[24] |
Suo Y, Chen Z X, Rahman S (2018). Experimental and numerical investigation of fracture toughness of anisotropic shale rocks. In: Proceedings of the 6th Unconventional Resources Technology Conference (URTeC), Houston, TX, USA
|
[25] |
Tan X, Konietzky H, Frühwirt T, Dan D Q (2015). Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech Rock Eng, 48(4): 1341–1351
CrossRef
Google scholar
|
[26] |
Tavallali A, Vervoot A (2010). Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min, 47(2): 313–322
CrossRef
Google scholar
|
[27] |
Wang J, Xie L Z, Xie H P, Ren L, He B, Li C B, Yang Z P, Gao C (2016). Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests. J Nat Gas Sci Eng, 36: 1120–1129
CrossRef
Google scholar
|
[28] |
Wang Y, Li C H, Hu Y Z, Mao T Q (2017). Brazilian test for tensile failure of anisotropic shale under different strain rates at quasi-static loading. Energies, 10(9): 1324
CrossRef
Google scholar
|
[29] |
Wang Z J, Jacobs F, Ziegler M (2014). Visualization of load transfer behaviour between geogrid and sand using PFC2D. Geotext Geomembr, 42(2): 83–90
CrossRef
Google scholar
|
[30] |
Wu S C, Ma J, Cheng Y, Xu M F, Huang X Q (2018). Numerical analysis of the flattened Brazilian test: failure process, recommended geometric parameters and loading conditions. Eng Fract Mech, 204: 288–305
CrossRef
Google scholar
|
[31] |
Xia L, Zeng Y W (2018). Parametric study of smooth joint parameters on the mechanical behavior of transversely isotropic rocks and research on calibration method. Comput Geotech, 98(JUN): 1–7
CrossRef
Google scholar
|
[32] |
Yang B D, Jiao Y, Lei S T (2006). A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput, 23(6): 607–631
CrossRef
Google scholar
|
[33] |
Yang S Q, Huang Y H (2014). Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech Sinica-prc, 30(4): 547–558
CrossRef
Google scholar
|
[34] |
Yoon J (2007). Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min, 44(6): 871–889
CrossRef
Google scholar
|
[35] |
Yuan R F, Shen B T (2017). Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock. Int J Rock Mech Min, 93: 54–65
CrossRef
Google scholar
|
[36] |
Zhang Y, Li T Y, Xie L Z, Yang Z P, Li R Y (2017). Shale lamina thickness study based on micro-scale image processing of thin sections. J Nat Gas Sci Eng, 46: 817–829
CrossRef
Google scholar
|
[37] |
Zhao P, Xie L, Fan Z, Deng L, Liu J (2021). Mutual interference of layer plane and natural fracture in the failure behavior of shale and the mechanism investigation. Petrol Sci, 18(2): 618–640
CrossRef
Google scholar
|
/
〈 |
|
〉 |