PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks
Bo HE , Jun LIU , Peng ZHAO , Jingfeng WANG
Front. Earth Sci. ›› 2021, Vol. 15 ›› Issue (4) : 803 -816.
PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks
A validated particle flow code (PFC2D)-based model was developed to investigate the indirect tensile mechanical behavior of shale containing two central parallel cracks under Brazilian splitting test conditions. The results show that preexisting cracks have a significant and insignificant influence on the tensile strength of shale under LPL and LVL conditions, respectively. When L≥10 mm, changing the L and H values has little effect on the tensile strength of shale. However, the inclusion of preexisting cracks have a positive effect on reducing the anisotropy of the shale specimens, and in the case of an L/D ratio of 0.3, the shale anisotropy is the lowest. Four failure modes were formed at different β and θ values under LPL conditions. In the case of β≥60°, the failure mode is mainly affected by β, and when β≤45°, the failure mode is more complicated than in the case of β≥60°. Only three major failure modes were observed under LVL conditions; in the case of 45°≤β≤75° and θ≤30°, the most complex failure mode occurred.
anisotropy / preexisting cracks / tensile strength / mechanical behavior / PFC2D
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
ISRM (1978). Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr, 15(3): 99–103 |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
Higher Education Press
/
| 〈 |
|
〉 |