Chemical geothermometry: application to mud volcanic waters of the Caucasus region

Olga E. KIKVADZE , Vasilii Yu. LAVRUSHIN , Boris G. POLYAK

Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (4) : 738 -757.

PDF (4411KB)
Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (4) : 738 -757. DOI: 10.1007/s11707-019-0810-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Chemical geothermometry: application to mud volcanic waters of the Caucasus region

Author information +
History +
PDF (4411KB)

Abstract

The generation temperatures of gas-water fluids released from mud volcanoes in different provinces of the Caucasian region have been constrained using Mg/Li (ТMg/Li) chemical geothermometry. Mud volcanic fluids in the Taman Peninsula (Kerch-Taman mud volcanic province) were generated at temperatures (ТMg/Li) from 41 to 137°С. The depths of the respective mud reservoirs estimated from ТMg/Li values and local geothermal gradient are in a range of 1.0 to 3.4 km which spans the Maykop Formation of marine shale. For the South Caspian province, the ТMg/Li values of waters vary from 18 to 137°C and the respective root depths НMg/Li of mud volcanoes range from ~ 0.85 to 6.5 km. The obtained TMg/Li values for the analyzed mud volcanic waters from Caucasian provinces are in positive correlation with НСО3 contents and water oxygen isotope compositions (δ 18OH2O and Δδ 18OH2O) and in high negative correlation with Cl. The increase of ТMg/Li toward the Greater Caucasus Range, as well as the lateral TMg/Li patterns in the Taman and South Caspian mud volcanic provinces, support the idea that mud volcanic fluids generate at temperatures increasing progressively toward the Alpine orogenic belt.

Keywords

mud volcano / fluid / chemical geothermometry / stable isotopes / Caucasus region

Cite this article

Download citation ▾
Olga E. KIKVADZE, Vasilii Yu. LAVRUSHIN, Boris G. POLYAK. Chemical geothermometry: application to mud volcanic waters of the Caucasus region. Front. Earth Sci., 2020, 14(4): 738-757 DOI:10.1007/s11707-019-0810-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamia S A (1985). Crust and mantle structure in the Caucasus and its relation to modern geological structures. In: Geophysical Fields and Crust Structure in Transcaucasia. Moscow: Nauka, 151–169 (in Russian)

[2]

Adamia S, Mumladze T, Sadradze N, Tsereteli E, Tsereteli N, Varazanashvili O (2008). Late Cenozoic tectonics and geodynamics of Georgia (SW Caucasus). Georgian International Journal of Sciences and Technology, 1: 77–107

[3]

Adamia S, Zakariadze G, Chkhotua T, Sadradze N, Tsereteli N, Chabukiani A, Gventsadze A (2011). Geology of the Caucasus: a review. Turk J Earth Sci, 20: 489–544

[4]

Aliev Ad A, Bairamov A A (2007). Space and time patterns of mud volcanism in Azerbaijan in the context of a new tectonic model. Transactions, IG NAN Azerbaijan, 35: 25–45 (in Russian).

[5]

Aliyev A A, Guliyev I S, Rakhmanov R R (2009). Catalogue of mud volcanoes eruptions of Azerbaijan: 1810–2007. Baku: NaftaPress, 1–109

[6]

Aliyev A A, Guliyev I S, Dadashev F G, Rakhmanov R R (2015) Atlas of the world mud volcanoes, Baku: NaftaPress,1–323

[7]

Aliev S (1985). Map of heat flows in basins of Azerbaijan, scaled 1:500000 (Ismail-Zade T A and Gadzhiev T G, eds). Moscow: Mingeo SSSR (in Russian)

[8]

Ali-Zade Ak A (2008). Geology of Azerbaijan. Book VII. Oil and Gas. Baku: NaftaPress,1–672 (in Russian)

[9]

Bödvarsson G (1961). Physical characteristics of natural heat resources in Iceland. In: UN Conference on new sources of energy. Rome: 1–19

[10]

Bödvarsson G, Pálmason G (1961). Exploration of subsurface temperatures in Iceland. Jokull, 11: 39–48

[11]

Chelidze T L (1983) Thermodynamic environments and petrophysical models of regions of the earth’s crust in the Caucasus. In: Chikovani D S, Lursmanashvili O V, eds. The structure of the Georgia earth crust inferred from seismic and magnetic data. (Proceed. Geophysics Institute of the Georgian Acad. of Sci., 51). Tbilisi: Metsniereba,97–115 (in Russian)

[12]

Chelnokov G A, Bragin I V, Kharitonova N A (2018). Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia). J Hydrol (Amst), 559: 942–953

[13]

Craig H (1961). Isotopic variation in meteoric waters. Science, 233: 133–149

[14]

Craig H (1963). The isotope geochemistry of water and carbon in geothermal areas. In: Tongiorgi E, ed. Nuclear geology on geothermal areas. Pisa: Spoleto, 17–53

[15]

Dählmann A, de Lange G J (2003). Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett, 212(3–4): 377–391

[16]

D’Amore F, Arnórsson S (2000). Geothermometry. In: Arnórsson S, ed. Isotopic and chemical techniques in geothermal exploration, development and use. Sampling methods, data handling, interpretation. Vienna: International Atomic Energy Agency,152–199

[17]

Dimitrov L (2002). Mud volcanoes as the most important pathways for degassing deeply buried sediments. Earth Sci Rev, 59(1-4): 49–76

[18]

Dubinin A V, Dubinina E O (2014). Isotope composition of oxygen and hydrogen in the Black Sea waters as a result of the dynamics of water masses. Oceanology (Mosc), 54(6): 713–729

[19]

Dubinina E O, Kovalenker V A, Avdeenko A S, Lavrushin V Yu, Stepanets M I (2005). Origin of mineral springs of the Elbrus region, northern Caucasus: Isotopic-geochemical evidence. Geochem Int, 43(10): 988–998

[20]

Dubinina E O (2013). Stable Isotopes of Light Elements in Rock-Fluid Interactions and Contamination. Dissertation for the Doctoral Degree. Moscow: IGEM,1–50 (in Russian)

[21]

Ershov V V, Levin B V (2016). New data on the material composition of mud volcano products on Kerch Peninsula. Dokl Earth Sci, 471(1): 1149–1153

[22]

Ershov V V, Nikitenko O A, Perstneva Yu A (2016). Geochemistry of mud and fluid migration in mud volcanoes. Vestnik of the Far East Branch of the Russian Academy of Sciences, 5(189): 52–58 (in Russian)

[23]

Etiope G (2015). Natural Gas Seepage. The Earth’s Hydrocarbon Degassing. Switzerland: Springer, 1–199

[24]

Ferronsky V I, Polyakov V A (2012). Isotopes of the earth’s hydrosphere. Berlin: Springer,1–628

[25]

Feyzullayev A A (2012). Mud volcanoes in the South Caspian basin: nature and estimated depth of its products. Nat Sci, 4(07): 445–453

[26]

Fouillac C, Michard G (1981). Sodium/litium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10(1): 55–70

[27]

Fournier R O (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1-4): 41–50

[28]

Fournier R O, Truesdell A H (1973). An empirical Na K Ca chemical geothermometer for natural waters. Geochim Cosmochim Acta, 37(5): 1255–1275

[29]

Gamkrelidze I P, Giorgobiani T V (1989). Problems of Alpian deformation in the Greater Caucasus and adjacent areas. In: Milanovskii E E, Koronovskii N V, eds. Geology and Mineral Resources of the Greater Caucasus. Moscow: Nauka, 35–40 (in Russian)

[30]

Gieskes J M, You C F, Lee T, Yui T F, Chen H W (1992). Hydro-geochemistry of mud volcanoes in Taiwan. Acta Geologica Taiwanica, 30: 79–88

[31]

Giggenbach W F (1995). Variations in the chemical and isotopic composition of fluids discharged from the taupo volcanic zone, New Zealand. J Volcanol Geotherm Res, 68(1-3): 89–116

[32]

Guliev I S, Dadashev F G, Poletaev A V (2013). Isotopes of Hydrocarbon Gases in Azerbaijan. Baku: NaftaPress, 1–107 (in Russian)

[33]

Guliev I S, Huseynov D A, Feizullaev A A (2004). Fluids of mud volcanoes in the Southern Caspian sedimentary basin: geochemistry and sources in light of new data on the carbon, hydrogen, and oxygen isotopic compositions. Geochem Int, 42(7): 688–695

[34]

Guliev I S, Kadirov F A, Reilindzher R E (2002). Active tectonics of Azerbaijan: dased on geodesical, gravimetric, and seismic data. Dokl Earth Sci, 382(6): 812–815

[35]

Guliev I S, Pavlenko N I, Radjabov M M (1988). Zones of regional decompaction in the South Caspian basin sedimentary cover. Lithol Miner Resour, 5: 130–136

[36]

Horn R A (1969). Marine Chemistry. The structure of water and the chemistry of the hydrosphere. New York: Willey-Interscience,1–565

[37]

Iosseliani M S, Diasamidze S P (1983). Compiling seismic model of the earth crust in Georgia intermountain depression. In: Chikovani D S, Lursmanashvili O V, eds. The structure of the Georgia earth crust inferred from seismic and magnetic data. (Proceed. Geophysics Institute of the Georgian Acad. of Sci., 51). Tbilisi: Metsniereba, 34–42 (in Russian)

[38]

Jakubov A A, Alizade A A, Zeinalov M M (1971). Mud volcanoes of Azerbaijan. Baku: Publ. AN Azerbaijan, 1–258 (in Russian)

[39]

Jakubov A A, Grigoryants B V, Aliev A D, Babazade A D, Veliev M M, Gadzhiev Ya A, Guseinzade I G, Kabulova A Ya, Kastryulin N S, Matanov F A, Mustafaev M G, Rakhmanov R R, Safarova O B, Seidov A G (1980). Mud volcanism in the USSR territory and its relation with petroleum potential. Baku: Elm,1–167 (in Russian)

[40]

Kadirov F A, Floyd M, Reilinger R, Alizadeh Ak A, Guliyev I S, Mammadov S G, Safarov R T (2015). Active geodynamics of the Caucasus region: implications for earthquake hazards in Azerbaijan. Proceed. of Azerbaijan National Academy of Sciences. Sciences of Earth, 3: 3–17

[41]

Karandashev V K, Leikin A Y, Khvostikov V A, Kutseva N K, Pirogova S V (2016). Water analysis by inductively coupled plasma mass spectrometry. Inorg Mater, 52(14): 1391–1404

[42]

Kharaka Y K, Mariner R H (1989). Chemical geothermomethers and their application to formation waters from sedimentary basins. In: Naeser N D, McCulloch T H, eds. Thermal history of sedimentary basins, methods and case histories. New York: Springer-Verlag, 99–117

[43]

Kikvadze O E, Lavrushin V Y, Pokrovskii B G, Polyak B G (2014). Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol Miner Resour, 49(6): 491–504

[44]

Khain V E (1982). Tectonic history of the Greater Caucasus in fixistic and mobilistic models. Геотектоника, 4: 3–13 (in Russian)

[45]

Kholodov V N (2002). Mud volcanoes: distribution and genesis: communication 1. Mud-volcanic provinces and morphology of mud volcanoes. Lithol Miner Resour, 37(3): 197–209

[46]

Kholodov V N (2013). Distribution and formation conditions of salt diapirs and mud volcanoes. Lithol Miner Resour, 48(5): 398–415

[47]

Kokh S N, Shnyukov Y F, Sokol E V, Novikova S A, Kozmenko O A, Semenova D V, Rybak E N (2015). Heavy carbon travertine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment Geol, 325: 26–40

[48]

Kokh S N, Sokol E V, Dekterev A A, Kokh K A, Rashidov T M, Tomilenko A A, Bul’bak T A, Khasaeva A, Guseinov A (2017). The 2011 strong fire eruption of Shikhzarli mud volcano, Azerbaijan: a case study with implications for methane flux estimation. Environ Earth Sci, 76(20): 701

[49]

Kopf A, Deyhle A, Lavrushin V Yu, Polyak B G, Gieskes J M, Buachidze G I, Wallmann K, Eisenhauer A (2003). Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. International Journal of Earth Sciences. Geol Rundsch, 92: 407–425

[50]

Kopf A J (2002). Significance of mud volcanism. Rev Geophys, 40(2): 1005–1012

[51]

Krasnopevtseva G V, Rezanov I A, Shevchenko V I (1977). Deep structure, seismic interfaces, and crust evolution in the Caucasus. In: Crust and Mantle Structure, from Seismic Data. Kiev: Naukova Dumka, 203–216 (in Russian)

[52]

Lagunova, I A (1975). Genesis of Boron in Waters of Mud Volcanoes, Sov. Geol., 1975, 1: 147–152. (in Russian)

[53]

Lagunova I A, Gemp S D (1971). Chemistry of mud volcanic waters in the Kerch-Taman province. In: Hydrogeology and Geological Role of Groundwaters. Leningrad: Leningrad University, 201–210 (in Russian)

[54]

Lagunova I A, Gemp S D (1978). Water chemistry of mud volcanoes. Sovetskaya Geologiya, 8: 108–125 (in Russian)

[55]

Lavrushin V Yu, Polyak B G, Prasolov R M, Kamenskii I L (1996). Sources of material in mud volcano products (based on isotopic, hydrochemical, and geological data). Lithol Miner Resour, 31(6): 557–578

[56]

Lavrushin V Yu (2012). Subsurface fluids of the Greater Caucasus and its surroundings (Transactions, GIN, Issue 599). Moscow: GEOS, 1–348 (in Russian)

[57]

Lavrushin V Yu, Kopf A, Deyhle A, Stepanets M I (2003). Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): evidence from boron isotopes. Lithol Miner Resour, 38(2): 120–153

[58]

Lavrushin V Yu, Dubinina E O, Avdeenko A S (2005). Isotopic composition of oxigen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia). Lithol Miner Resour, 40(2): 123–137

[59]

Lavrushin V Y, Guliev I S, Kikvadze O E, Aliev A A, Pokrovsky B G, Polyak B G (2015). Waters from mud volcanoes of Azerbaijan: isotopic-geochemical properties and generation environments. Lithol Miner Resour, 50(1): 1–25

[60]

Leonov Yu G (2007). The Greater Caucasus in the Alpine Epoch. Moscow: GEOS, 1–368 (in Russian)

[61]

Mazzini A, Svensen H, Planke S, Guliyev I, Akhmanov G G, Fallik T, Banks D (2009). When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Mar Pet Geol, 26(9): 1704–1715

[62]

Mazzini A, Etiope G (2017). Mud volcanism: an updated review. Earth Sci Rev, 168: 81–112

[63]

Milanovskii E E, Koronovskii N V (1973). Orogenic volcanism and tectonics of the Alpine Belt of Eurasia. Moscow: Nedra,1–279 (In Russian)

[64]

Milkov A V (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol, 167(1-2): 29–42

[65]

Mosar J, Kangarli T, Bochud M, Glasmacher U A, Rast A, Brunet M F, Sosson M (2010). Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Geol Soc Lond Spec Publ, 340(1): 261–280

[66]

Nadirov R S, Bagirov E, Tagiyev M, Lerche I (1997). Flexural plate subsidence, sedimentation rates, and structural development of the super-deep South Caspian Basin. Mar Pet Geol, 14(4): 383–400

[67]

Olenchenko V V, Shnyukov Y F, Gas’kova O L, Kokh S N, Sokol E V, Bortnikova S B, El’tsov I N (2015). Explosion dynamics of the Andrusov mud vent (Bulganak mud volcano area, Kerch Peninsula, Russia). Dokl Earth Sci, 464(1): 951–955

[68]

Oppo D, Capozzi R, Nigarov A, Esenov P (2014). Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar Pet Geol, 57: 122–134

[69]

Philip H, Cisternas A, Gvishiani A, Gorshkov A (1989). The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics, 161(1-2): 1–21

[70]

Pokrovsky B G, Zaviyalov P O, Bujakaite M I, Izhitskiy A S, Petrov O L, Kurbaniyazov A K, Shimanovich V M (2017). Geochemistry of O, H, C, S, and Sr Isotopes in the water and sediments of the Aral Basin. Geochem Int, 55(11): 1033–1045

[71]

Radzhabov M M, Osipova I B, Armenakyan K H, Ioseliani M S, Diasamidze S P, Shcherbakov V V, Kutsenko E Ya, Votsalevsky Z S (1985). Wave fields and deep structure of the Caucasus according to seismic data. Geophysical field and crustal structure of the Caucasus. Moscow: Nauka,5–33 (in Russian)

[72]

Rakhmanov R R (1987). Mud volcanoes: implications for petroleum reservoir potential. Moscow: Nedra,1–174 (in Russian)

[73]

Revil A (2002). Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophys Res Lett, 29(12): 1574

[74]

Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov S V, Gomez F, Al-Ghazzi R, Karam G (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth, 111: 1–26

[75]

Rostovtsev K O, ed. (2000). The geological map of the Russian Federation, scaled 1:200 000. Caucasian series, sheets L-37-XIX, L-37-XXV (Taman). FGUGP “Caucasus geological survey” NGO “Yuzhmorgeologiya” Publisher: VSEGEI

[76]

Seletskii Yu B (1991). Deuterium and oxygen-18 in the context of mud volcanic waters formation. Izvestia AN SSSR. Geology, 5: 133–138 (in Russian)

[77]

Seletskii Yu B (1998). Condensation and solution waters of oil and gas fields: possible mechanisms of formation of their isotopic composition. Water Resour, 25(3): 259–264

[78]

Shnyukov E F, Sobolevskiy Yu V, Gnatenko G I, Naumenko P I, Kutniy V A (1986). Mud volcanoes of the Kerch-Taman region: an atlas. Kiev: Naukova Dumka, 1–152 (in Russian).

[79]

Shnyukov E, Sheremetiev V, Maslakov N, Kutniy V, Gusakov I, Trofimov V (2005). Mud volcanoes of the Kerch-Taman region. Krasnodar: Glav Media Publishing House,1–176 (in Russian)

[80]

Sobissevitch A L, Gorbatikov A V, Ovsuchenko A N (2008). Deep structure of the Mt. Karabetov mud volcano. Dokl Earth Sci, 422(1): 1181–1185

[81]

Sokol E, Kokh S, Kozmenko O, Novikova S, Khvorov P, Nigmatulina E, Belogub E, Kirillov M (2018). Mineralogy and geochemistry of mud volcanic ejecta: A new look at old issues (A case study from the Bulganak field, Northern Black Sea). Minerals (Basel), 8(8): 344

[82]

Sokol E V, Kokh S N, Kozmenko O A, Lavrushin V Yu, Belogub E V, Khvorov P V, Kikvadze O E (2019). Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem Geol, 525: 58–81

[83]

Tugolesov D A, Gorshkov A S, Meisner L B, Solov’ev V V, Khakhalev E M (1985). Tectonics of Mesozoic–Cenozoic deposits of the Black Sea Basin. Moscow: Nedra, 1–215 (in Russian) Vetshtei`n V E (1982). Oxygen and Hydrogen Isotopes in Natural Waters of the USSR. Leningrad: Nedra, 1–216 (in Russian)

[84]

You C F, Gieskes J M, Lee T, Yui T F, Chen H W (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl Geochem, 19(5): 695–707

[85]

Zonenshain L P, Pichon X (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123(1–4): 181–211

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4411KB)

Supplementary files

Supplementary Material

864

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/