A modified flexible spatiotemporal data fusion model

Jia TANG, Jingyu ZENG, Li ZHANG, Rongrong ZHANG, Jinghan LI, Xingrong LI, Jie ZOU, Yue Zeng, Zhanghua Xu, Qianfeng WANG, Qing ZHANG

PDF(4831 KB)
PDF(4831 KB)
Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (3) : 601-614. DOI: 10.1007/s11707-019-0800-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A modified flexible spatiotemporal data fusion model

Author information +
History +

Abstract

Remote sensing spatiotemporal fusion models blend multi-source images of different spatial resolutions to create synthetic images with high resolution and frequency, contributing to time series research where high quality observations are not available with sufficient frequency. However, existing models are vulnerable to spatial heterogeneity and land cover changes, which are frequent in human-dominated regions. To obtain quality time series of satellite images in a human-dominated region, this study developed the Modified Flexible Spatial-temporal Data Fusion (MFSDAF) approach based on the Flexible Spatial-temporal Data Fusion (FSDAF) model by using the enhanced linear regression (ELR). Multiple experiments of various land cover change scenarios were conducted based on both actual and simulated satellite images, respectively. The proposed MFSDAF model was validated by using the correlation coefficient (r), relative root mean square error (RRMSE), and structural similarity (SSIM), and was then compared with the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and FSDAF models. Results show that in the presence of significant land cover change, MFSDAF showed a maximum increase in r, RRMSE, and SSIM of 0.0313, 0.0109 and 0.049, respectively, compared to FSDAF, while ESTARFM performed best with less temporal difference of in the input images. In conditions of stable landscape changes, the three performance statistics indicated a small advantage of MFSDAF over FSDAF, but were 0.0286, 0.0102, 0.0317 higher than for ESTARFM, respectively. MFSDAF showed greater accuracy of capturing subtle changes and created high-precision images from both actual and simulated satellite images.

Keywords

MFSDAF / enhanced linear regression / land cover change / heterogeneous / time-series

Cite this article

Download citation ▾
Jia TANG, Jingyu ZENG, Li ZHANG, Rongrong ZHANG, Jinghan LI, Xingrong LI, Jie ZOU, Yue Zeng, Zhanghua Xu, Qianfeng WANG, Qing ZHANG. A modified flexible spatiotemporal data fusion model. Front. Earth Sci., 2020, 14(3): 601‒614 https://doi.org/10.1007/s11707-019-0800-x

References

[1]
Chen B, Huang B, Xu B (2017). A hierarchical spatiotemporal adaptive fusion model using one image pair. Int J Digit Earth, 10(6): 639–655
CrossRef Google scholar
[2]
Cheng Q, Liu H Q, Shen H F, Wu P H, Zhang L P (2017). A spatial and temporal nonlocal filter-based data fusion method. IEEE Trans Geosci Remote Sens, 55(8): 4476–4488
CrossRef Google scholar
[3]
Cui J T, Zhang X, Luo M Y (2018). Combining linear pixel unmixing and STARFM for spatiotemporal fusion of Gaofen-1 wide field of view imagery and MODIS imagery. Remote Sens, 10(7): 1047
CrossRef Google scholar
[4]
Das M, Ghosh S K (2016). Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci Remote S, 13(12): 1984–1988
CrossRef Google scholar
[5]
Emelyanova I V, McVicar T R, Van Niel T G, Li L T, van Dijk A I J M (2013). Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection. Remote Sens Environ, 133(12): 193–209
CrossRef Google scholar
[6]
Gao F , Masek J, Schwaller M, Hall F(2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE T Geosci Remote, 44(8): 2207–2218
CrossRef Google scholar
[7]
He C, Zhang Z, Xiong D, Du J, Liao M (2017). Spatio-temporal series remote sensing image prediction based on multi-dictionary Bayesian Fusion. ISPRS Int J Geoinf, 6(11): 374
CrossRef Google scholar
[8]
Huang B, Zhang H (2014). Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land-cover changes. Int J Remote Sens, 35(16): 6213–6233
CrossRef Google scholar
[9]
Knauer K, Gessner U, Fensholt R, Kuenzer C (2016). An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sens, 8(5): 425
CrossRef Google scholar
[10]
Ping B, Meng Y S, Su F Z (2018). An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery. Remote Sens, 10(6): 881
CrossRef Google scholar
[11]
Quan J, Zhan W, Ma T, Du Y, Guo Z, Qin B (2018). An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sens Environ, 206: 403–423
CrossRef Google scholar
[12]
Roy D P, Wulder M A, Loveland T R, C E W, Allen R G, Anderson M C, Helder D, Irons J R, Johnson D M, Kennedy R, Scambos T A, Schaaf C B, Schott J R, Sheng Y, Vermote E F, Belward A S, Bindschadler R, Cohen W B, Gao F, Hipple J D, Hostert P, Huntington J, Justice C O, Kilic A, Kovalskyy V, Lee Z P, Lymburner L, Masek J G, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne R H, Zhu Z (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ, 145: 154–172
CrossRef Google scholar
[13]
Song H, Huang B (2013). Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans Geosci Remote Sens, 51(4): 1883–1896
CrossRef Google scholar
[14]
Townshend J R, Masek J G, Huang C, Vermote E F, Gao F, Channan S, Sexton J O, Feng M, Narasimhan R, Kim D, Song K, Song D, Song X P, Noojipady P, Tan B, Hansen M C, Li M, Wolfe R E (2012). Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. Int J Digit Earth, 5(5): 373–397
CrossRef Google scholar
[15]
Walker J J, de Beurs K M, Wynne R H, Gao F (2012). Evaluation of landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens Environ, 117: 381–393
CrossRef Google scholar
[16]
Wang H, Pan X, Luo J, Luo Z, Chang C, Shen Y (2015b). Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain. Chin J Eco Agric, 23(9): 1199–1209
[17]
Wang J, Huang B (2018). A spatiotemporal satellite image fusion model with autoregressive error correction (AREC). Int J Remote Sens, 39(20): 1–26
CrossRef Google scholar
[18]
Wang J, Huang B (2017). A rigorously-weighted spatiotemporal Fusion model with uncertainty analysis. Remote Sens, 9(10): 990
CrossRef Google scholar
[19]
Wang P, Gao F, Masek J G (2014a). Operational data fusion framework for building frequent landsat-like imagery. IEEE Trans Geosci Remote Sens, 52(11): 7353–7365
CrossRef Google scholar
[20]
Wang Q, Atkinson P M (2018). Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens Environ, 204: 31–42
CrossRef Google scholar
[21]
Wang Q M, Blackburn G A, Onojeghuo A O, Dash J, Zhou L, Zhang Y, Atkinson P M (2017a). Fusion of Landsat 8 OLI and Sentinel-2 MSI data. IEEE Trans Geosci Remote Sens, 55(7): 3885–3899
CrossRef Google scholar
[22]
Wang Q F, Shi P, Lei T, Geng G, Liu J, Mo X, Li X, Zhou H, Wu J (2015a). The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. Int J Biometeorol, 35(13): 3760–3769
[23]
Wang Q F, Tang J, Zeng J Y, Qu Y P, Zhang Q, Shui W, Wang W L, Yi L, Leng S (2018a). Spatial-temporal evolution of vegetation evapotranspiration in Hebei Province, China. J Integr Agric, 17(9): 2107–2117
CrossRef Google scholar
[24]
Wang Q F, Tang J, Zeng J Y, Leng S, Shui W (2019). Regional detecting of multiple change points and workable application for precipitation by maximum likelihood approach. Arab J Geosci, 12(23): 745
CrossRef Google scholar
[25]
Wang Q F,Wu J,Lei T,He B,Wu Z, Liu M,Mo X,Geng G,Li X,Zhou H, Liu D (2014b). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quatern int, 349: 10–21
CrossRef Google scholar
[26]
Wang Q F, Wu J, Li X, Zhou H, Yang J, Geng G, An X, Liu L, Tang Z (2017c). A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Int J Biometeorol, 61(4): 685–699
CrossRef Pubmed Google scholar
[27]
Wang Q F, Zeng J Y, Leng S, Fan B X, Tang J, Jiang C, Huang Y, Zhang Q, Qu Y P, Wang W L, Shui W (2018b). The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Front Earth Sci, 12(4): 818–833
CrossRef Google scholar
[28]
Wang Q M, Zhang Y, Onojeghuo A O, Zhu X, Atkinson P M (2017b). Enhancing spatio-temporal fusion of MODIS and landsat data by incorporating 250 m MODIS data. IEEE J Stars, 10(9): 1–8
CrossRef Google scholar
[29]
Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004). Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 13(4): 600–612
CrossRef Pubmed Google scholar
[30]
Watts J D, Powell S L, Lawrence R L, Hilker T (2011). Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens Environ, 115(1): 66–75
CrossRef Google scholar
[31]
Weng Q, Fu P, Gao F (2014). Generating daily land surface temperature at landsat resolution by fusing landsat and MODIS data. Remote Sens Environ, 145(8): 55–67
CrossRef Google scholar
[32]
Wu M Q, Wu C Y, Huang W J, Niu Z, Wang C Y, Li W, Hao P Y (2016). An improved high spatial and temporal data fusion approach for combining landsat and MODIS data to generate daily synthetic Landsat imagery. Inf Fusion, 31: 14–25
CrossRef Google scholar
[33]
Wu M, Yang C, Song X, Hoffmann W C, Huang W, Niu Z, Wang C, Li W, Yu B (2018). Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci Rep, 8(1): 2016
CrossRef Pubmed Google scholar
[34]
Wu P, Shen H, Zhang L, Göttsche F M (2015). Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens Environ, 156: 169–181
CrossRef Google scholar
[35]
Xie D, Zhang J, Zhu X, Pan Y, Liu H, Yuan Z, Yun Y (2016). An improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions. Sensors (Basel), 16(2): 207
CrossRef Pubmed Google scholar
[36]
Xu H, Shi T, Wang M, Lin Z (2017). Land cover changes in the Xiong’ an New Area and a prediction of ecological response to forthcoming regional planning. Acta Ecol Sin, 37(19): 6289–6301
[37]
Xue J, Leung Y, Fung T (2017). A bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sens, 9(12): 1310
CrossRef Google scholar
[38]
Xun L, Deng C, Wang S, Huang G B, Zhao B, Lauren P (2017). Fast and accurate spatiotemporal fusion based upon extreme learning machine. IEEE Geosci Remote S, 13(12): 2039–2043
[39]
Zhang H, Chen J M, Huang B, Song H, Li Y (2014). Reconstructing seasonal variation of landsat vegetation index related to leaf area index by fusing with MODIS data. IEEE J Stars, 7(3): 950–960
CrossRef Google scholar
[40]
Zhang W, Li A, Jin H, Bian J, Zhang Z, Lei G, Qin Z, Huang C (2013). An enhanced spatial and temporal data fusion model for fusing landsat and MODIS surface reflectance to generate high temporal landsat-like data. Remote Sens, 5(10): 5346–5368
CrossRef Google scholar
[41]
Zhang X Y (2015). Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens Environ, 156: 457–472
CrossRef Google scholar
[42]
Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, Huete A (2003). Monitoring vegetation phenology using MODIS. Remote Sens Environ, 84(3): 471–475
CrossRef Google scholar
[43]
Zhao Y, Huang B, Song H (2018). A robust adaptive spatial and temporal image fusion model for complex land surface changes. Remote Sens Environ, 208: 42–62
CrossRef Google scholar
[44]
Zhu X, Chen J, Gao F, Chen X, Masek J G (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ, 114(11): 2610–2623
CrossRef Google scholar
[45]
Zhu X, Helmer E H, Gao F, Liu D, Chen J, Lefsky M A (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens Environ, 172: 165–177
CrossRef Google scholar

Acknowledgments

This research received financial support by the National Natural Science Foundation of China (Grant Nos. 41601562 and 41761014), the National Key Research and Development Program of China (No. 2017YFC1502404), the China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project (No. JZ0145B752017), the Research Project for Young Teachers of Fujian Province (No. JAT160085).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4831 KB)

Accesses

Citations

Detail

Sections
Recommended

/