A modified flexible spatiotemporal data fusion model

Jia TANG , Jingyu ZENG , Li ZHANG , Rongrong ZHANG , Jinghan LI , Xingrong LI , Jie ZOU , Yue Zeng , Zhanghua Xu , Qianfeng WANG , Qing ZHANG

Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (3) : 601 -614.

PDF (4831KB)
Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (3) : 601 -614. DOI: 10.1007/s11707-019-0800-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A modified flexible spatiotemporal data fusion model

Author information +
History +
PDF (4831KB)

Abstract

Remote sensing spatiotemporal fusion models blend multi-source images of different spatial resolutions to create synthetic images with high resolution and frequency, contributing to time series research where high quality observations are not available with sufficient frequency. However, existing models are vulnerable to spatial heterogeneity and land cover changes, which are frequent in human-dominated regions. To obtain quality time series of satellite images in a human-dominated region, this study developed the Modified Flexible Spatial-temporal Data Fusion (MFSDAF) approach based on the Flexible Spatial-temporal Data Fusion (FSDAF) model by using the enhanced linear regression (ELR). Multiple experiments of various land cover change scenarios were conducted based on both actual and simulated satellite images, respectively. The proposed MFSDAF model was validated by using the correlation coefficient (r), relative root mean square error (RRMSE), and structural similarity (SSIM), and was then compared with the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and FSDAF models. Results show that in the presence of significant land cover change, MFSDAF showed a maximum increase in r, RRMSE, and SSIM of 0.0313, 0.0109 and 0.049, respectively, compared to FSDAF, while ESTARFM performed best with less temporal difference of in the input images. In conditions of stable landscape changes, the three performance statistics indicated a small advantage of MFSDAF over FSDAF, but were 0.0286, 0.0102, 0.0317 higher than for ESTARFM, respectively. MFSDAF showed greater accuracy of capturing subtle changes and created high-precision images from both actual and simulated satellite images.

Keywords

MFSDAF / enhanced linear regression / land cover change / heterogeneous / time-series

Cite this article

Download citation ▾
Jia TANG, Jingyu ZENG, Li ZHANG, Rongrong ZHANG, Jinghan LI, Xingrong LI, Jie ZOU, Yue Zeng, Zhanghua Xu, Qianfeng WANG, Qing ZHANG. A modified flexible spatiotemporal data fusion model. Front. Earth Sci., 2020, 14(3): 601-614 DOI:10.1007/s11707-019-0800-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen B, Huang B, Xu B (2017). A hierarchical spatiotemporal adaptive fusion model using one image pair. Int J Digit Earth, 10(6): 639–655

[2]

Cheng Q, Liu H Q, Shen H F, Wu P H, Zhang L P (2017). A spatial and temporal nonlocal filter-based data fusion method. IEEE Trans Geosci Remote Sens, 55(8): 4476–4488

[3]

Cui J T, Zhang X, Luo M Y (2018). Combining linear pixel unmixing and STARFM for spatiotemporal fusion of Gaofen-1 wide field of view imagery and MODIS imagery. Remote Sens, 10(7): 1047

[4]

Das M, Ghosh S K (2016). Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci Remote S, 13(12): 1984–1988

[5]

Emelyanova I V, McVicar T R, Van Niel T G, Li L T, van Dijk A I J M (2013). Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection. Remote Sens Environ, 133(12): 193–209

[6]

Gao F , Masek J, Schwaller M, Hall F(2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE T Geosci Remote, 44(8): 2207–2218

[7]

He C, Zhang Z, Xiong D, Du J, Liao M (2017). Spatio-temporal series remote sensing image prediction based on multi-dictionary Bayesian Fusion. ISPRS Int J Geoinf, 6(11): 374

[8]

Huang B, Zhang H (2014). Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land-cover changes. Int J Remote Sens, 35(16): 6213–6233

[9]

Knauer K, Gessner U, Fensholt R, Kuenzer C (2016). An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sens, 8(5): 425

[10]

Ping B, Meng Y S, Su F Z (2018). An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery. Remote Sens, 10(6): 881

[11]

Quan J, Zhan W, Ma T, Du Y, Guo Z, Qin B (2018). An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sens Environ, 206: 403–423

[12]

Roy D P, Wulder M A, Loveland T R, C E W, Allen R G, Anderson M C, Helder D, Irons J R, Johnson D M, Kennedy R, Scambos T A, Schaaf C B, Schott J R, Sheng Y, Vermote E F, Belward A S, Bindschadler R, Cohen W B, Gao F, Hipple J D, Hostert P, Huntington J, Justice C O, Kilic A, Kovalskyy V, Lee Z P, Lymburner L, Masek J G, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne R H, Zhu Z (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ, 145: 154–172

[13]

Song H, Huang B (2013). Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans Geosci Remote Sens, 51(4): 1883–1896

[14]

Townshend J R, Masek J G, Huang C, Vermote E F, Gao F, Channan S, Sexton J O, Feng M, Narasimhan R, Kim D, Song K, Song D, Song X P, Noojipady P, Tan B, Hansen M C, Li M, Wolfe R E (2012). Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. Int J Digit Earth, 5(5): 373–397

[15]

Walker J J, de Beurs K M, Wynne R H, Gao F (2012). Evaluation of landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens Environ, 117: 381–393

[16]

Wang H, Pan X, Luo J, Luo Z, Chang C, Shen Y (2015b). Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain. Chin J Eco Agric, 23(9): 1199–1209

[17]

Wang J, Huang B (2018). A spatiotemporal satellite image fusion model with autoregressive error correction (AREC). Int J Remote Sens, 39(20): 1–26

[18]

Wang J, Huang B (2017). A rigorously-weighted spatiotemporal Fusion model with uncertainty analysis. Remote Sens, 9(10): 990

[19]

Wang P, Gao F, Masek J G (2014a). Operational data fusion framework for building frequent landsat-like imagery. IEEE Trans Geosci Remote Sens, 52(11): 7353–7365

[20]

Wang Q, Atkinson P M (2018). Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens Environ, 204: 31–42

[21]

Wang Q M, Blackburn G A, Onojeghuo A O, Dash J, Zhou L, Zhang Y, Atkinson P M (2017a). Fusion of Landsat 8 OLI and Sentinel-2 MSI data. IEEE Trans Geosci Remote Sens, 55(7): 3885–3899

[22]

Wang Q F, Shi P, Lei T, Geng G, Liu J, Mo X, Li X, Zhou H, Wu J (2015a). The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. Int J Biometeorol, 35(13): 3760–3769

[23]

Wang Q F, Tang J, Zeng J Y, Qu Y P, Zhang Q, Shui W, Wang W L, Yi L, Leng S (2018a). Spatial-temporal evolution of vegetation evapotranspiration in Hebei Province, China. J Integr Agric, 17(9): 2107–2117

[24]

Wang Q F, Tang J, Zeng J Y, Leng S, Shui W (2019). Regional detecting of multiple change points and workable application for precipitation by maximum likelihood approach. Arab J Geosci, 12(23): 745

[25]

Wang Q F,Wu J,Lei T,He B,Wu Z, Liu M,Mo X,Geng G,Li X,Zhou H, Liu D (2014b). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quatern int, 349: 10–21

[26]

Wang Q F, Wu J, Li X, Zhou H, Yang J, Geng G, An X, Liu L, Tang Z (2017c). A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Int J Biometeorol, 61(4): 685–699

[27]

Wang Q F, Zeng J Y, Leng S, Fan B X, Tang J, Jiang C, Huang Y, Zhang Q, Qu Y P, Wang W L, Shui W (2018b). The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Front Earth Sci, 12(4): 818–833

[28]

Wang Q M, Zhang Y, Onojeghuo A O, Zhu X, Atkinson P M (2017b). Enhancing spatio-temporal fusion of MODIS and landsat data by incorporating 250 m MODIS data. IEEE J Stars, 10(9): 1–8

[29]

Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004). Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 13(4): 600–612

[30]

Watts J D, Powell S L, Lawrence R L, Hilker T (2011). Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens Environ, 115(1): 66–75

[31]

Weng Q, Fu P, Gao F (2014). Generating daily land surface temperature at landsat resolution by fusing landsat and MODIS data. Remote Sens Environ, 145(8): 55–67

[32]

Wu M Q, Wu C Y, Huang W J, Niu Z, Wang C Y, Li W, Hao P Y (2016). An improved high spatial and temporal data fusion approach for combining landsat and MODIS data to generate daily synthetic Landsat imagery. Inf Fusion, 31: 14–25

[33]

Wu M, Yang C, Song X, Hoffmann W C, Huang W, Niu Z, Wang C, Li W, Yu B (2018). Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci Rep, 8(1): 2016

[34]

Wu P, Shen H, Zhang L, Göttsche F M (2015). Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens Environ, 156: 169–181

[35]

Xie D, Zhang J, Zhu X, Pan Y, Liu H, Yuan Z, Yun Y (2016). An improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions. Sensors (Basel), 16(2): 207

[36]

Xu H, Shi T, Wang M, Lin Z (2017). Land cover changes in the Xiong’ an New Area and a prediction of ecological response to forthcoming regional planning. Acta Ecol Sin, 37(19): 6289–6301

[37]

Xue J, Leung Y, Fung T (2017). A bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sens, 9(12): 1310

[38]

Xun L, Deng C, Wang S, Huang G B, Zhao B, Lauren P (2017). Fast and accurate spatiotemporal fusion based upon extreme learning machine. IEEE Geosci Remote S, 13(12): 2039–2043

[39]

Zhang H, Chen J M, Huang B, Song H, Li Y (2014). Reconstructing seasonal variation of landsat vegetation index related to leaf area index by fusing with MODIS data. IEEE J Stars, 7(3): 950–960

[40]

Zhang W, Li A, Jin H, Bian J, Zhang Z, Lei G, Qin Z, Huang C (2013). An enhanced spatial and temporal data fusion model for fusing landsat and MODIS surface reflectance to generate high temporal landsat-like data. Remote Sens, 5(10): 5346–5368

[41]

Zhang X Y (2015). Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens Environ, 156: 457–472

[42]

Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, Huete A (2003). Monitoring vegetation phenology using MODIS. Remote Sens Environ, 84(3): 471–475

[43]

Zhao Y, Huang B, Song H (2018). A robust adaptive spatial and temporal image fusion model for complex land surface changes. Remote Sens Environ, 208: 42–62

[44]

Zhu X, Chen J, Gao F, Chen X, Masek J G (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ, 114(11): 2610–2623

[45]

Zhu X, Helmer E H, Gao F, Liu D, Chen J, Lefsky M A (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens Environ, 172: 165–177

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4831KB)

1245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/