Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm

Jia ZHU , Jiong SHU , Xing YU

Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (4) : 721 -732.

PDF (1548KB)
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (4) : 721 -732. DOI: 10.1007/s11707-019-0798-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm

Author information +
History +
PDF (1548KB)

Abstract

Inclusion of cloud processes is essential for precipitation prediction with a numerical weather prediction model. However, convective parameterization contains numerous parameters whose values are in large uncertainties. In particular, it is still not clear how the parameters of a sub-grid-scale convection scheme can be modified to improve high-resolution precipitation prediction. To address these issues, a micro-genetic (micro-GA) algorithm is coupled to the Kain-Fritsch (KF) convective parameterization scheme (CPS) in the WRF to improve the quantitative precipitation forecast (QPF). The optimization focuses on two parameters in the KF scheme: the convective time scale and the conversion rate. The optimizing process is controlled by the micro-GA using a QPF skill score as the fitness function. Two heavy rainfall events related to typhoons that made landfall over the south-east coastal region of China are selected, and for each case the parameter values are adjusted to achieve the best QPF skill. Significant improvements in QPF are evident with an increase in the average equitable threat score (ETS) by 5.8% for the first case, and by 18.4% for the second case. The results demonstrate that the micro-GA-KF coupling system is effective in optimizing the parameter values, which affect the applicability of CPS in a high-resolution model, and therefore improves the rainfall prediction in both ETS and spatial distribution.

Keywords

quantitative precipitation forecast / micro-GA / Kain-Fritsch scheme / typhoon

Cite this article

Download citation ▾
Jia ZHU, Jiong SHU, Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm. Front. Earth Sci., 2019, 13(4): 721-732 DOI:10.1007/s11707-019-0798-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arakawa A (2004). The cumulus parameterization problem: Past, present, and future. J Clim, 17(13): 2493–2525

[2]

Aybar-Ruiz A, Jiménez-Fernández S, Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salvador-González P, Salcedo-Sanz S (2016). A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy, 132: 129–142

[3]

Álvarez A, López C, Riera M, Hernández-García E, Tintoré J (2000). Forecasting the sst space-time variability of the Alboran Sea with genetic algorithms. Geophys Res Lett, 27(17): 2709–2712

[4]

Bao X, Davidson N E, Yu H, Hankinson M C N, Sun Z, Rikus L J, Liu J, Yu Z, Wu D (2015). Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon Weather Rev, 143(9): 3377–3405

[5]

Bauer P, Thorpe A, Brunet G (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567): 47–55

[6]

Brill K F, Mesinger F (2009). Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores. Weather Forecast, 24(6): 1748–1754

[7]

Bullock O R Jr, Alapaty K, Herwehe J A, Kain J S (2015). A dynamically computed convective time scale for the Kain-Fritsch convective parameterization scheme. Mon Weather Rev, 143(6): 2105–2120

[8]

Chen F, Dudhia J (2001). Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev, 129(4): 569–585

[9]

Clark A J, Gallus W A Jr, Chen T C (2007). Comparison of the diurnal precipitation cycle in convection-resolving and non-convection resolving mesoscale models. Mon Weather Rev, 135(10): 3456–3473

[10]

Correia J Jr, Arritt R W, Anderson C J (2008). Idealized mesoscale convective system structure and propagation using convective parameterization. Mon Weather Rev, 136(7): 2422–2442

[11]

Dai A (2006). Precipitation characteristics in eighteen coupled climate models. J Clim, 19(18): 4605–4630

[12]

Davis C A, Bosart L F (2002). Numerical simulations of the genesis of Hurricane Diana (1984). Part II: sensitivity of track and intensity prediction. Mon Weather Rev, 130(5): 1100–1124

[13]

Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37(8): 1722–1733

[14]

Haidar A, Verma B (2017). A genetic algorithm based feature selection approach for rainfall forecasting in sugarcane areas. Computational Intelligence. IEEE

[15]

Hong S, Park S K, Yu X (2015). Scheme based optimization of land surface model using a micro-genetic algorithm: assessment of its performance and usability for regional applications. Sci Online Lett Atmos, 11: 129–133

[16]

Hong S Y, Noh Y, Dudhia J (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134(9): 2318–2341

[17]

Iacono M J, Delamere J S, Mlawer E J, Shephard M W, Clough S A, Collins W D (2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res D Atmos, 113(D13): D13103

[18]

Jiménez P A, Dudhia J, González-Rouco J F, Navarro J, Montávez J P, García-Bustamante E (2012). A revised scheme for the WRF surface layer formulation. Mon Weather Rev, 140(3): 898–918

[19]

Jin Y Q, Wang Y (2001). A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. Int J Remote Sens, 22(16): 3093–3099

[20]

Kishtawal C M, Basu S, Patadia F, Thapliyal P K (2003). Forecasting summer rainfall over India using genetic algorithm. Geophys Res Lett, 30(23): 2203

[21]

Kain J S, Fritsch J M (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784–2802

[22]

Kain J S (2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43(1): 170–181

[23]

Krishnakumar K (1990). Micro-genetic algorithms for stationary and non-stationary function optimization. In: Intelligent Control and Adaptive Systems, 1196: 289–296

[24]

Lee Y H, Park S K, Chang D E (2006). Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Ann Geophys, 24(12): 3185–3189

[25]

Li F, Song J, Li X (2018). A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of typhoon Haiyan (2013). Nat Hazards, 92(2): 647–671

[26]

Li M, Ping F, Tang X, Yang S (2019). Effects of microphysical processes on the rapid intensification of Super Typhoon Meranti. Atmos Res, 219: 77–94

[27]

Li X (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Sci China Earth Sci, 56(2): 270–281

[28]

Li X, Pu Z (2009). Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J Meteorol Soc Jpn, 87(3): 403–421

[29]

Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J S (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim, 20(20): 5201–5207

[30]

Lin Y, Farley R D, Orville H D (1983). Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol, 22(6): 1065–1092

[31]

Lou L, Li X (2016). Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv Atmos Sci, 33(1): 101–109

[32]

Neggers R A J, Siebesma A P, Lenderink G, Holtslag A A M (2004). An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon Weather Rev, 132(11): 2525–2538

[33]

Oana L, Spataru A (2017). Use of genetic algorithms in numerical weather prediction. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 2016: 456–461

[34]

Qiao F, Liang X Z (2016). Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst, 8(2): 764–785

[35]

Sandeep C P R, Krishnamoorthy C, Balaji C (2018). Impact of cloud parameterization schemes on the simulation of Cyclone Vardah using the WRF model. Curr Sci, 115(6): 1143–1153

[36]

Schaefer J T (1990). The critical success index as an indicator of warning skill. Weather Forecast, 5(4): 570–575

[37]

Sims A P, Alapaty K, Raman S (2017). Sensitivities of summertime mesoscale circulations in the coastal Carolinas to modifications of the Kain-Kritsch cumulus parameterization. Mon Weather Rev, 145(11): 4381–4399

[38]

Singh R, Singh C, Ojha S P, Kumar A S, Kishtawal C M, Kumar A S K (2016). Land surface temperature from INSAT-3D imager data: retrieval and assimilation in NWP model. J Geophys Res D Atmospheres, 121(12): 6909–6926

[39]

Skamarock W C, Klemp J B (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys, 227(7): 3465–3485

[40]

Skamarock W C, Klemp J B, Duda M G, Fowler L D, Park S H, Ringler T D (2012). A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev, 140(9): 3090–3105

[41]

Sugimoto S, Takahashi H G (2016). Effect of spatial resolution and cumulus parameterization on simulated precipitation over South Asia. Sola, 12(Special Edition): 7–12

[42]

Sun Y, Zhong Z, Lu W, Hu Y (2014). Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate modeling—a case study for Megi (2010). Mon Weather Rev, 142(3): 1240–1249

[43]

Szpiro G G (1997). Forecasting chaotic time series with genetic algorithms. Phys Rev E, 55(3): 2557–2568

[44]

Thompson G, Rasmussen R M, Manning K (2004). Explicit forecasts of winter precipitation using an improve bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev, 132(2): 519–542

[45]

Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Weather Rev, 125(2): 252–278

[46]

Wang C C (2014). On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: the example of Taiwan. Weather Forecast, 29(4): 788–798

[47]

Xu H, Du B (2015). The impact of Typhoon Danas (2013) on the torrential rainfall associated with Typhoon Fitow (2013) in east China. Adv Meteorol, 2015: 1–11

[48]

Xu H, Liu R, Zhai G, Li X (2016). Torrential rainfall responses of typhoon Fitow (2013) to radiative processes: a three-dimensional WRF modeling study. J Geophys Res D Atmospheres, 121(23): 14127–14136

[49]

Xu H, Li X (2017). Torrential rainfall processes associated with a landfall of Typhoon Fitow (2013): a three-dimensional wrf modeling study. J Geophys Res D Atmospheres, 122(11): 6004–6024

[50]

Yang M J, Tung Q C (2003). Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn, 81(5): 1163–1183

[51]

Yu X, Park S K, Lee Y H, Choi Y S (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. Sci Online Lett Atmos, 9(0): 36–39

[52]

Yu Z, Yu H, Chen P, Qian C, Yue C (2009). Verification of tropical cyclone related satellite precipitation estimates in mainland China. J Appl Meteorol Climatol, 48(11): 2227–2241

[53]

Yu Z F, Chen Y D, Wu D, Chen G M, Bao X W, Uamg Q Z, Yu R L, Zhang L, Tang J, Xu M, Zeng Z J (2014). Overview of Severe Typhoon Fitow and its operational forecasts. Trop Cyclone Res Rev, 3: 22–34

[54]

Zhang C, Wang Y (2018). Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim Dyn, 51(9–10): 3613–3633

[55]

Zheng Y, Alapaty K, Herwehe J A, Del Genio A D, Niyogi D (2016). Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon Weather Rev, 144(3): 833–860

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1548KB)

767

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/