![](/develop/static/imgs/pdf.png)
Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm
Jia ZHU, Jiong SHU, Xing YU
Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm
Inclusion of cloud processes is essential for precipitation prediction with a numerical weather prediction model. However, convective parameterization contains numerous parameters whose values are in large uncertainties. In particular, it is still not clear how the parameters of a sub-grid-scale convection scheme can be modified to improve high-resolution precipitation prediction. To address these issues, a micro-genetic (micro-GA) algorithm is coupled to the Kain-Fritsch (KF) convective parameterization scheme (CPS) in the WRF to improve the quantitative precipitation forecast (QPF). The optimization focuses on two parameters in the KF scheme: the convective time scale and the conversion rate. The optimizing process is controlled by the micro-GA using a QPF skill score as the fitness function. Two heavy rainfall events related to typhoons that made landfall over the south-east coastal region of China are selected, and for each case the parameter values are adjusted to achieve the best QPF skill. Significant improvements in QPF are evident with an increase in the average equitable threat score (ETS) by 5.8% for the first case, and by 18.4% for the second case. The results demonstrate that the micro-GA-KF coupling system is effective in optimizing the parameter values, which affect the applicability of CPS in a high-resolution model, and therefore improves the rainfall prediction in both ETS and spatial distribution.
quantitative precipitation forecast / micro-GA / Kain-Fritsch scheme / typhoon
[1] |
Arakawa A (2004). The cumulus parameterization problem: Past, present, and future. J Clim, 17(13): 2493–2525
CrossRef
Google scholar
|
[2] |
Aybar-Ruiz A, Jiménez-Fernández S, Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salvador-González P, Salcedo-Sanz S (2016). A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy, 132: 129–142
CrossRef
Google scholar
|
[3] |
Álvarez A, López C, Riera M, Hernández-García E, Tintoré J (2000). Forecasting the sst space-time variability of the Alboran Sea with genetic algorithms. Geophys Res Lett, 27(17): 2709–2712
CrossRef
Google scholar
|
[4] |
Bao X, Davidson N E, Yu H, Hankinson M C N, Sun Z, Rikus L J, Liu J, Yu Z, Wu D (2015). Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon Weather Rev, 143(9): 3377–3405
CrossRef
Google scholar
|
[5] |
Bauer P, Thorpe A, Brunet G (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567): 47–55
CrossRef
Pubmed
Google scholar
|
[6] |
Brill K F, Mesinger F (2009). Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores. Weather Forecast, 24(6): 1748–1754
CrossRef
Google scholar
|
[7] |
Bullock O R Jr, Alapaty K, Herwehe J A, Kain J S (2015). A dynamically computed convective time scale for the Kain-Fritsch convective parameterization scheme. Mon Weather Rev, 143(6): 2105–2120
CrossRef
Google scholar
|
[8] |
Chen F, Dudhia J (2001). Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev, 129(4): 569–585
CrossRef
Google scholar
|
[9] |
Clark A J, Gallus W A Jr, Chen T C (2007). Comparison of the diurnal precipitation cycle in convection-resolving and non-convection resolving mesoscale models. Mon Weather Rev, 135(10): 3456–3473
CrossRef
Google scholar
|
[10] |
Correia J Jr, Arritt R W, Anderson C J (2008). Idealized mesoscale convective system structure and propagation using convective parameterization. Mon Weather Rev, 136(7): 2422–2442
CrossRef
Google scholar
|
[11] |
Dai A (2006). Precipitation characteristics in eighteen coupled climate models. J Clim, 19(18): 4605–4630
CrossRef
Google scholar
|
[12] |
Davis C A, Bosart L F (2002). Numerical simulations of the genesis of Hurricane Diana (1984). Part II: sensitivity of track and intensity prediction. Mon Weather Rev, 130(5): 1100–1124
CrossRef
Google scholar
|
[13] |
Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37(8): 1722–1733
CrossRef
Google scholar
|
[14] |
Haidar A, Verma B (2017). A genetic algorithm based feature selection approach for rainfall forecasting in sugarcane areas. Computational Intelligence. IEEE
CrossRef
Google scholar
|
[15] |
Hong S, Park S K, Yu X (2015). Scheme based optimization of land surface model using a micro-genetic algorithm: assessment of its performance and usability for regional applications. Sci Online Lett Atmos, 11: 129–133
CrossRef
Google scholar
|
[16] |
Hong S Y, Noh Y, Dudhia J (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134(9): 2318–2341
CrossRef
Google scholar
|
[17] |
Iacono M J, Delamere J S, Mlawer E J, Shephard M W, Clough S A, Collins W D (2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res D Atmos, 113(D13): D13103
CrossRef
Google scholar
|
[18] |
Jiménez P A, Dudhia J, González-Rouco J F, Navarro J, Montávez J P, García-Bustamante E (2012). A revised scheme for the WRF surface layer formulation. Mon Weather Rev, 140(3): 898–918
CrossRef
Google scholar
|
[19] |
Jin Y Q, Wang Y (2001). A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. Int J Remote Sens, 22(16): 3093–3099
CrossRef
Google scholar
|
[20] |
Kishtawal C M, Basu S, Patadia F, Thapliyal P K (2003). Forecasting summer rainfall over India using genetic algorithm. Geophys Res Lett, 30(23): 2203
CrossRef
Google scholar
|
[21] |
Kain J S, Fritsch J M (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784–2802
CrossRef
Google scholar
|
[22] |
Kain J S (2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43(1): 170–181
CrossRef
Google scholar
|
[23] |
Krishnakumar K (1990). Micro-genetic algorithms for stationary and non-stationary function optimization. In: Intelligent Control and Adaptive Systems, 1196: 289–296
CrossRef
Google scholar
|
[24] |
Lee Y H, Park S K, Chang D E (2006). Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Ann Geophys, 24(12): 3185–3189
CrossRef
Google scholar
|
[25] |
Li F, Song J, Li X (2018). A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of typhoon Haiyan (2013). Nat Hazards, 92(2): 647–671
CrossRef
Google scholar
|
[26] |
Li M, Ping F, Tang X, Yang S (2019). Effects of microphysical processes on the rapid intensification of Super Typhoon Meranti. Atmos Res, 219: 77–94
CrossRef
Google scholar
|
[27] |
Li X (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Sci China Earth Sci, 56(2): 270–281
CrossRef
Google scholar
|
[28] |
Li X, Pu Z (2009). Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J Meteorol Soc Jpn, 87(3): 403–421
CrossRef
Google scholar
|
[29] |
Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J S (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim, 20(20): 5201–5207
CrossRef
Google scholar
|
[30] |
Lin Y, Farley R D, Orville H D (1983). Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol, 22(6): 1065–1092
CrossRef
Google scholar
|
[31] |
Lou L, Li X (2016). Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv Atmos Sci, 33(1): 101–109
CrossRef
Google scholar
|
[32] |
Neggers R A J, Siebesma A P, Lenderink G, Holtslag A A M (2004). An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon Weather Rev, 132(11): 2525–2538
CrossRef
Google scholar
|
[33] |
Oana L, Spataru A (2017). Use of genetic algorithms in numerical weather prediction. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 2016: 456–461
CrossRef
Google scholar
|
[34] |
Qiao F, Liang X Z (2016). Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst, 8(2): 764–785
CrossRef
Google scholar
|
[35] |
Sandeep C P R, Krishnamoorthy C, Balaji C (2018). Impact of cloud parameterization schemes on the simulation of Cyclone Vardah using the WRF model. Curr Sci, 115(6): 1143–1153
CrossRef
Google scholar
|
[36] |
Schaefer J T (1990). The critical success index as an indicator of warning skill. Weather Forecast, 5(4): 570–575
CrossRef
Google scholar
|
[37] |
Sims A P, Alapaty K, Raman S (2017). Sensitivities of summertime mesoscale circulations in the coastal Carolinas to modifications of the Kain-Kritsch cumulus parameterization. Mon Weather Rev, 145(11): 4381–4399
CrossRef
Pubmed
Google scholar
|
[38] |
Singh R, Singh C, Ojha S P, Kumar A S, Kishtawal C M, Kumar A S K (2016). Land surface temperature from INSAT-3D imager data: retrieval and assimilation in NWP model. J Geophys Res D Atmospheres, 121(12): 6909–6926
CrossRef
Google scholar
|
[39] |
Skamarock W C, Klemp J B (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys, 227(7): 3465–3485
CrossRef
Google scholar
|
[40] |
Skamarock W C, Klemp J B, Duda M G, Fowler L D, Park S H, Ringler T D (2012). A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev, 140(9): 3090–3105
CrossRef
Google scholar
|
[41] |
Sugimoto S, Takahashi H G (2016). Effect of spatial resolution and cumulus parameterization on simulated precipitation over South Asia. Sola, 12(Special Edition): 7–12
CrossRef
Google scholar
|
[42] |
Sun Y, Zhong Z, Lu W, Hu Y (2014). Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate modeling—a case study for Megi (2010). Mon Weather Rev, 142(3): 1240–1249
CrossRef
Google scholar
|
[43] |
Szpiro G G (1997). Forecasting chaotic time series with genetic algorithms. Phys Rev E, 55(3): 2557–2568
CrossRef
Google scholar
|
[44] |
Thompson G, Rasmussen R M, Manning K (2004). Explicit forecasts of winter precipitation using an improve bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev, 132(2): 519–542
CrossRef
Google scholar
|
[45] |
Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Weather Rev, 125(2): 252–278
CrossRef
Google scholar
|
[46] |
Wang C C (2014). On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: the example of Taiwan. Weather Forecast, 29(4): 788–798
CrossRef
Google scholar
|
[47] |
Xu H, Du B (2015). The impact of Typhoon Danas (2013) on the torrential rainfall associated with Typhoon Fitow (2013) in east China. Adv Meteorol, 2015: 1–11
CrossRef
Google scholar
|
[48] |
Xu H, Liu R, Zhai G, Li X (2016). Torrential rainfall responses of typhoon Fitow (2013) to radiative processes: a three-dimensional WRF modeling study. J Geophys Res D Atmospheres, 121(23): 14127–14136
CrossRef
Google scholar
|
[49] |
Xu H, Li X (2017). Torrential rainfall processes associated with a landfall of Typhoon Fitow (2013): a three-dimensional wrf modeling study. J Geophys Res D Atmospheres, 122(11): 6004–6024
CrossRef
Google scholar
|
[50] |
Yang M J, Tung Q C (2003). Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn, 81(5): 1163–1183
CrossRef
Google scholar
|
[51] |
Yu X, Park S K, Lee Y H, Choi Y S (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. Sci Online Lett Atmos, 9(0): 36–39
CrossRef
Google scholar
|
[52] |
Yu Z, Yu H, Chen P, Qian C, Yue C (2009). Verification of tropical cyclone related satellite precipitation estimates in mainland China. J Appl Meteorol Climatol, 48(11): 2227–2241
CrossRef
Google scholar
|
[53] |
Yu Z F, Chen Y D, Wu D, Chen G M, Bao X W, Uamg Q Z, Yu R L, Zhang L, Tang J, Xu M, Zeng Z J (2014). Overview of Severe Typhoon Fitow and its operational forecasts. Trop Cyclone Res Rev, 3: 22–34
CrossRef
Google scholar
|
[54] |
Zhang C, Wang Y (2018). Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim Dyn, 51(9–10): 3613–3633
CrossRef
Google scholar
|
[55] |
Zheng Y, Alapaty K, Herwehe J A, Del Genio A D, Niyogi D (2016). Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon Weather Rev, 144(3): 833–860
CrossRef
Google scholar
|
/
〈 |
|
〉 |