Large-scale characteristics of landfalling tropical cyclones with abrupt intensity change
Qianqian JI , Feng XU , Jianjun XU , Mei LIANG , Shifei, TU , Siqi, CHEN
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (4) : 808 -816.
Large-scale characteristics of landfalling tropical cyclones with abrupt intensity change
Data from the China Meteorological Administration and ERA-Interim are used to examine the environmental characteristics of landfalling tropical cyclones (TCs) with abrupt intensity change. The results show that, of all 657 landfalling TCs during 1979–2017, 71%, 70% and 65% of all landfalling TDs, TSs and TYs, respectively, intensify. Of all the 16595 samples, 4.0% and 0.2% of typhoons and tropical storms, respectively, experience over-water rapid intensification (RI) process during their life cycle. Meanwhile, 4.5% and 0.6% of typhoons and tropial storms, respectively, undergo over-water rapid decay (RD). These two kinds of cases, i.e., RI and RD, are used to analyze their associated large-scale conditions. Comparisons show that the RI cases are generally on the south side of the strong western Pacific subtropical high (WPSH); warm sea surface temperatures (SSTs) and sufficient water vapor fluxes existing in RI samples is a dominant feature that is conducive to the development of TCs. Also, the moderate low-level relative vorticity is favorable for TC intensification. On the contrary, the RD TCs are located on the west side of the WPSH; significant decreasing SSTs and low-level water vapor transport may synergistically contribute to RD. Simultaneously, low-level relative vorticity seems to be unfavorable for the development of TCs.
landfalling tropical cyclone / abrupt intensity change / environmental factors / dynamic composite analysis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Supplementary files
/
| 〈 |
|
〉 |