
Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China
Bing YANG, Xionghua ZHANG, Wenkun QIE, Yi WEI, Xing HUANG, Haodong XIA
Front. Earth Sci. ›› 2020, Vol. 14 ›› Issue (2) : 344-359.
Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China
An integrated study of biostratigraphy, microfacies, and stable carbon isotope stratigraphy was carried out on the late Famennian–early Asselian carbonates of the Long’an section in Guangxi, South China. Stable carbon isotope studies in the Long’an section have revealed four major positive shifts of δ13C values in the Carboniferous strata in South China. The first shift occurred in the Siphonodella dasaibaensia zone in the Tournaisian, with an amplitude of 4.19‰. The second shift occurred near the Visean/Serpukhovian boundary, with an amplitude of 2.63‰. The third shift occurred in the Serpukhovian, with an amplitude of 3.95‰. The fourth shift occurred in the Kasimovian, with an amplitude of 3.69‰. Furthermore, there were several brief positive δ13C shifts during the late Famennian to early Tournaisian. All of these shifts can be well correlated globally, and each corresponds to sea-level regressions in South China and Euro-America, indicating increases in ocean primary productivity and global cooling events. Chronologically, the four major positive excursions of δ13C, together with several brief positive δ13C shifts that were observed during the late Famennian to the early Tournaisian, correspond to the well-accepted Glacial I, II, and III events.
carbon isotopes / Late Paleozoic Ice Age / Carboniferous / sea-level changes / global climate variation
[1] |
Bruckschen P, Oesmann S, Veizer J (1999). Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem Geol, 161(1–3): 127–163
CrossRef
Google scholar
|
[2] |
Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R (2008). Mississippian δ13C carb and conodont apatite d18O records—their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 273–292
CrossRef
Google scholar
|
[3] |
Buggisch W, Wang X D, Alekseev A S, Joachimski M M (2011). Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol, 301(1–4): 18–38
CrossRef
Google scholar
|
[4] |
Caputo M V (1985). Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol, 51(1–4): 291–317
CrossRef
Google scholar
|
[5] |
Caputo M V, Crowell J C (1985). Migration of glacial centers across Gondwana during Paleozoic Era. Geol Soc Am Bull, 96(8): 1020–1036
CrossRef
Google scholar
|
[6] |
Chen J T, Montañez I P, Qi Y P, Wang X D, Wang Q L, Lin W (2016). Coupled sedimentary and d13C records of late Mississippian platform-to-slope successions from South China: insight into d13C chemostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 162–178
CrossRef
Google scholar
|
[7] |
Cohen K M, Finney S C, Gibbard P L (2013). The ISC international chronostratigraphic chart. Episodes, 36: 199–204
|
[8] |
Crowell J C (1978). Gondwana glaciation, cyclothems, continental positioning and climate change. Am J Sci, 278(10): 1345–1372
CrossRef
Google scholar
|
[9] |
Elrick M E, Read J F (1991). Cyclic ramp-to-basin carbonate deposits, Lower Mississippian, Wyoming, and Montana. J Sediment Petrol, 61: 1194–1224
|
[10] |
Feng Z Z, Yang Y Q, Bao Z D (1998). Lithofacies Palaeogeography of the Carboiferous in South China. Beijing: Geological Publishing House
|
[11] |
Flügel E (2010). Microfacies of Carbonate Rocks: Analisis, Interpretation and application. Berlin, Heidelberg: Springer-Verlag
|
[12] |
Frakes L A, Francis J E, Syktus J I (1992). Climate Modes of the Phanerozoic. London: Cambridge University Press
|
[13] |
Garzanti E, Sciunnach D (1997). Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth Planet Sci Lett, 148(1–2): 359–365
CrossRef
Google scholar
|
[14] |
González-Bonorino G (1992). Carboniferous glaciation in Gondwana: evidence for grounded marine ice and continental glaciation in southwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol, 91(3–4): 363–375
CrossRef
Google scholar
|
[15] |
Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H (2008). Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 222–233
CrossRef
Google scholar
|
[16] |
Huang X, Aretz M, Zhang X H, Du Y S, Qie W K, Wen Q, Wang C N, Luan T F (2017). Pennsylvanian-early Permian palaeokarst development on the Yangtze Platform, South China, and implications for the regional sea-level history. Geol J, 53(4): 1241–1262
|
[17] |
Hudson J D (1975). Carbon isotopes and limestone cement. Geology, 3(1): 19–22
CrossRef
Google scholar
|
[18] |
Isaacson P E, Díaz-Martínez E, Grader G W, Kalvoda J, Babek O, Devuyst F X (2008). Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 126–142
CrossRef
Google scholar
|
[19] |
Isbell J L, Miller M F, Wolfe K L, Lenaker P A (2003). Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern hemisphere cyclothems? Spec Pap Geol Soc Am, 370: 5–24
|
[20] |
Jiang G, Kennedy M J, Christie-Blick N (2003). Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822–826
CrossRef
Pubmed
Google scholar
|
[21] |
Kabanov P B, Alekseev A S, Gibshman N B, Gabdullin R R, Bershov A V (2016). The upper Viséan–Serpukhovian in the type area for the serpukhovian stage (Moscow Basin, Russia): part 1. sequences, disconformities, and biostratigraphic summary. Geol J, 51(2): 163–194
CrossRef
Google scholar
|
[22] |
Kaufman A J, Knoll A H (1995). Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res, 73(1–4): 27–49
CrossRef
Pubmed
Google scholar
|
[23] |
Kuang G D, Li J J, Zhong J, Su Y B, Tao Y B (1999). The Carboniferous in Guangxi. Wuhan: China University of Geosciences Press
|
[24] |
Li J C, Kuang D Z, Zhang Z H, Hong Z Y (2011). Late Carboniferous–early Permian fusulinid biostratigraphy of Shunchang, Fujian province. Acta Micropalaeontologica Sin, 28(3): 309–315
|
[25] |
Li R F, Liu B P, Zhao C L (1996). Characteristics of cycle-sequence, carbon isotope features and glacio-eustasy of the Triticites zone in southern Guizhou. Acta Sedimentologica Sinica, 70(4): 342–350
|
[26] |
Li R F, Liu B P, Zhao C L (1997). Correlation of Carboniferous depositional sequences on the Yangtze plate with other on a global scale. Acta Sedimentologica Sinica, 15(3): 23–28
|
[27] |
Liu B P, Li R F, You D H (1994). Carboniferous sequence stratigraphy and glacio-eustasy of Triticites zone in southern Guizhou, China. Earth Sci J China U, 19: 553–564
|
[28] |
Liu C G, Li G R, Wang D W, Liu Y L, Luo M X, Shao X M (2016). Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, Northwest China: implications for stratigraphic correlation and paleoclimate. J Earth Sci, 27(2): 317–328
CrossRef
Google scholar
|
[29] |
Liu C, Jarochowska E, Du Y S, Vachard D, Munnecke A (2017). Stratigraphical and d13C records of Permo-Carboniferous platform carbonates, South China: responses to late Paleozoic icehouse climate and icehouse-greenhouse transition. Palaeogeogr Palaeoclimatol Palaeoecol, 474: 113–129
CrossRef
Google scholar
|
[30] |
Lin C M, Ling H F, Wang S J, Zhang S (2002). Evolution regularities of carbon and oxygen isotopes in Carboniferous marina carbonate rocks from Jiangsu and Anhui provinces. Geochimica, 31(5): 415–423
|
[31] |
López-Gamundí O R, Buatois L A (2010). Introduction: Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geol Soc Am Bull, 468: 5–8
|
[32] |
Magaritz M, Holser W T, Kirschvink J L (1986). Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 320(6059): 258–259
CrossRef
Google scholar
|
[33] |
Marshall J D, Brenchley P J, Mason P, Wolff G A, Astini R A, Hints L, Meidla T (1997). Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 132(1–4): 195–210
CrossRef
Google scholar
|
[34] |
Matchen D L, Kammer T W (2006). Incised valley fill interpretation for Mississippian Black Hand Sandstone, Appalachian Basin, USA: implications for glacial eustasy at Kinderhookian-Osagean (Tn2-Tn3) boundary. Sediment Geol, 191(1–2): 89–113
CrossRef
Google scholar
|
[35] |
Ma Z L, Wang Y, Wang Q L, Hoshiki Y, Uene K, Qi Y P, Wang X D (2013). Biostratigraphy of the Bashlirian-Moscovian boundary interval at Luokun section in Guizhou, South China. Acta Palaeontologica Sinic, 52(4): 492–502
|
[36] |
Mei M X, Li Z Y (2004). Sequence-stratigraphic succession and sedimentary-basin evolution from late Paleozoic to Triassic in the Yunnan-Guizhou-Guangxi region. Geoscience, 18: 555–563
|
[37] |
Mei M X, Ma Y S, Deng J, Chu H M, Liu Z R, Zhang H (2005). Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 32: 13–24
|
[38] |
Mii H S, Grossman E L, Yancey T E (1999). Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull, 111(7): 960–973
CrossRef
Google scholar
|
[39] |
Mii H S, Grossman E L, Yancey T E, Chuvashov B, Egorov A (2001). Isotopic records of brachiopod shells from the Russian Platform-evidence for the onset of mid-Carboniferous glaciation. Chem Geol, 175(1–2): 133–147
CrossRef
Google scholar
|
[40] |
Okuyucu C (2013). Fusulinid zonation of the Late Moscovian-Early Sakmarian sequences from the Taurides, southern Turkey. Neues Jahrb Geol Palaontol Abh, 268(3): 237–258
CrossRef
Google scholar
|
[41] |
Peng Y, Peng Y B, Lang X G, Ma H, Huang K, Li F, Shen B (2016). Marine carbon-sulfur biogeochemical cycles during the steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan basin, South China. J Earth Sci, 27(2): 242–254
CrossRef
Google scholar
|
[42] |
Qie W K, Liu J S, Chen J T, Wang X, Mii H, Zhang X, Huang X, Yao L, Algeo T J, Luo G (2015). Local overprints on the global carbonate d13C signal in Devonian–Carboniferous boundary successions of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 418: 290–303
CrossRef
Google scholar
|
[43] |
Qie W K, Zhang X H, Cai X F, Zhang Y (2007). Geobiological processes and the formation of hydrocarbon source rocks in the Carboniferous-Early Permian glacial period in South China. Earth Sci J China U, 32(6): 803–810
|
[44] |
Qie W K, Zhang X H, Du Y S, Zhang Y (2010). Lower Carboniferous carbon isotope stratigraphy in South China: implications for the Late Paleozoic glaciation. Sci China Earth Sci, 40(11): 1533–1542
|
[45] |
Qie W K, Zhang X H, Du Y S, Yang B, Ji W T, Luo G M (2014). Conodont biostratigraphy of Tournaisian shallow-water carbonates in central Guangxi, South China. Geobios, 47(6): 389–401
CrossRef
Google scholar
|
[46] |
Ross C A, Ross J R P (1988). Late Paleozoic transgressive-regressive deposition. SEPM Special Publication, 42: 227–247
|
[47] |
Rygel M C, Fielding C R, Frank T D, Birgenheier L P (2008). The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res, 78(8): 500–511
CrossRef
Google scholar
|
[48] |
Saltzman M R, González L A, Lohmann K C (2000). Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 28(4): 347–350
CrossRef
Google scholar
|
[49] |
Saltzman M R (2002). Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: implications for seawater chemistry and glaciation. Geol Soc Am Bull, 114(1):96–108
CrossRef
Google scholar
|
[50] |
Saltzman M R (2003). Late Paleozoic ice age: oceanic gateway or pCO2? Geology, 31(2): 151–154
CrossRef
Google scholar
|
[51] |
Saltzman M R, Thomas E (2012). Carbon isotope stratigraphy. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. Boston: Elsevier, 221–246
|
[52] |
Saltzman M R, Young S A (2005). Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33(2): 109–112
CrossRef
Google scholar
|
[53] |
Shen J, Algeo T J, Hu Q, Zhang N, Zhou L, Xia W C, Xie S C, Feng Q L (2012). Negative C isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology, 40(11): 963–966
CrossRef
Google scholar
|
[54] |
Shi Y K, Liu J R, Yang X N, Zhu L M (2009). Fusulinid faunas from the Datangian to Chihsian strata of the Zongdi section in Ziyun county, Guizhou province. Acta Micropalaeontologica Sin, 26(1): 1–30
|
[55] |
Smith L B, Read J F (2000). Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Midcontinent, United States. Geology, 28(3): 279–282
CrossRef
Google scholar
|
[56] |
Streel M, Caputo M V, Loboziak S, Melo J H G (2000). Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth Sci Rev, 52(1–3): 121–173
CrossRef
Google scholar
|
[57] |
Ueno K, Hayakawa N, Nakazawa T, Wang Y, Wang X D (2013). Pennsylvanian-Early Permian cyclothemic succession on the Yangtze carbonate platform, South China. Geol Soc Lond Spec Publ, 376(1): 235–267
CrossRef
Google scholar
|
[58] |
Veever J J, Powell C M (1987). Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional C sequences in Euramerica. Geol Soc Am Bull, 98(4): 475–487
CrossRef
Google scholar
|
[59] |
Wang J S, Jiang G Q, Xiao S H, Li Q, Wei Q (2008). Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in South China. Geology, 36(5): 345–350
CrossRef
Google scholar
|
[60] |
Wang X D, Qie W K, Sheng Q Y, Qi Y P, Wang Y, Liao Z T, Shen S Z, Ueno K (2013). Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. Geol Soc Lond Spec Publ, 376(1): 33–46
CrossRef
Google scholar
|
[61] |
Wynn T C, Read J F (2007). Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: a complex response to climate-driven fourth-order glacio-eustasy. Palaeogeogr Palaeoclimatol Palaeoecol, 256(3–4): 254–272
CrossRef
Google scholar
|
[62] |
Yang X N (1989). The fusulinids zonation of Maping Formation in Yishan county, Guangxi autonomous region. Geoscience, 3(3): 297–307
|
[63] |
Zhang L X, Zhou J P, Sheng J Z (2010). The Upper Carboniferous and Lower Permian Fusulinids from west Guizhou. Beijing: Science Press
|
[64] |
Zhou J P (1991). Fusulinid zones from Maping Formation of Changmo, Longlin, Guangxi on Carboniferous–Permian boundary. Acta Palaeontologica Sin, 30(3): 396–409
|
/
〈 |
|
〉 |