Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland
Bartłomiej SZYPUŁA, Małgorzata WIECZOREK
Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland
The aim of this study is geomorphometric relief classification of a temperate latitude upland area in Central Europe. The Silesian Upland represents diversified structural relief which contains a fan-shaped configuration of long thresholds and wide erosion depressions. A 20 m × 20 m digital elevation model (DEM) provided input data for the analysis. The k-median method was applied to examine morphometric variables of the relief. The aim of these activities was to identify clusters with objects of similar mathematical characteristics. These clusters were the basis of landform classification. Smaller numbers of clusters 4 transparently show hypsometric relationships. Key elements of the morphology of the area were clearly visible. The division into 6 clusters gives the best results—a detailed but clear image of the morphological diversity by distinguishing characteristic landform elements. The results for 8 clusters show significant background noise and are ambiguous, which makes them difficult to identify. Our research has confirmed that the k-median method is a useful tool for landform classifications. We determined optimal parameters of this method (filtering window size, DEM resolution, number of clusters, aspect influence).
k-median method / relief classifications / digital elevation model (DEM) / geomorphometry / Silesian Upland
[1] |
Alonso-Sarría F, Gomariz-Castillo F, Cánovas-García F (2018). A new approach to the openness index for landform characterization. Comput Geosci, 119: 68–79
CrossRef
Google scholar
|
[2] |
Arrell K E (2001). A fuzzy k-means classification of elevation derivatives to extract the natural landforms in Snowdonia, Wales. In: Proceedings of 9th National Conference on GIS Research UK (GISRUK 2001)
|
[3] |
Arrell K E, Fisher P F, Tate N J, Bastin L (2007). A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales. Comput Geosci, 33(10): 1366–1381
CrossRef
Google scholar
|
[4] |
Azanon J M, Delgado J, Gómez A (2004). Morphological terrain classification and analysis using geostatistical techniques. In: Proceedings of ISPRS Congress. Istanbul, 12–23
|
[5] |
Biernat S, Haisig J, Lewandowski J, Wilanowski S (1980). Geologic Map of Poland 1:200000, sheet Częstochowa. Warszawa: Instytut Geologiczny
|
[6] |
Broersen T, Peters R, Ledoux H (2017). Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud. Comput Geosci, 106: 171–180
CrossRef
Google scholar
|
[7] |
Bukowska-Jania E (1983). Contemporary fluvial processes in the eastern part of Silesian Upland. Dissertation for the Doctoral Degree, Wrocławski: Uniwersytet Wrocławski (in Polish)
|
[8] |
Burrough P A, Wilson J P, van Gaans P F M, Hansen A J (2001). Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landsc Ecol, 16(6): 523–546
CrossRef
Google scholar
|
[9] |
Chmal H (1976). Processes of the erosion forms development on the dumps of the coal mining in the Upper Silesian Basin. Dissertation for the Doctoral Degree, Wrocławski: Uniwersytet Wrocławski (in Polish)
|
[10] |
Czajka W (2009). Database of the terrain elevations in DTED format. Kwartalnik BELLONA- 90 lat geografii wojskowej (wydanie specjalne). MON, Warszawa. 26–30 (in Polish)
|
[11] |
Dekavalla M, Argialas D (2017). Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data. Geomorphology, 288: 66–82
CrossRef
Google scholar
|
[12] |
Deng Y (2007). New trends in digital terrain analysis: landform definition, representation and classification. Prog Phys Geogr, 31(4): 405–419
CrossRef
Google scholar
|
[13] |
Dikau R (1989). The application of a digital relief model to landform analysis. In: Raper J F ed Three dimensional applications in Geographical Information Systems, London: Taylor and Francis51–77.
|
[14] |
Dikau R, Brabb E E, Mark R M (1991). Landform classification of New Mexico by computer. Open File Report 91–634. U.S Geological Survey. 15
|
[15] |
DMA (Defense Mapping Agency) (2000) Performance specification digital terrain elevation data (DTED)
|
[16] |
Drăguţ L, Blaschke T (2006). Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3-4): 330–344
CrossRef
Google scholar
|
[17] |
Drăguţ L, Csillik O, Minár J, Evans I S (2013). Land-surface segmentation to delineate elementary forms from Digital Elevation Models. Geomorphometry, 16–20
|
[18] |
Drăguţ L, Eisank C (2011). Object representations at multiple scales from digital elevation models. Geomorphology (Amst), 129(3-4): 183–189
CrossRef
Pubmed
Google scholar
|
[19] |
Drăguţ L, Eisank C (2012). Automated object-based classification of topography from SRTM data. Geomorphology (Amst), 141-142(4): 21–33
CrossRef
Pubmed
Google scholar
|
[20] |
DTED-2 (2001). Digital Elevation Model of Poland level 2. Warszawa
|
[21] |
Dulias R (1994). Documentation of the group of the aeolian landforms between Woszczyce and Kleszczówka. Sosnowiec (in Polish)
|
[22] |
Dulias R (1995). Dunes of the southern part of the Silesian Upland. In: Proceedings of III Zjazd Geomorfologów Polskich: procesy geomorfologiczn,. Sosnowiec. 1, 19–20 (in Polish)
|
[23] |
ESRI (Environmental Systems Research Institute) 2017. ArcGIS Desktop: Release 10.5. Redlands, CA
|
[24] |
Evans I S (1972). General geomorphometry, derivatives of altitude and descriptive statistics. In: Chorley R ed. Spatial Analysis in Geomorphology, London:Methuen and Co., 17–91.
|
[25] |
Evans I S, Cox N J (1999). Relation between Land Surface Properties: Altitude, Slope and Curvature. In: Hergarten S, Neugebauer H J eds. Process Modelling and Landform Evolution, Heidelberg: Springer, 13–45
|
[26] |
Galon R, ed. (1972). Geomorphology of Poland vol. 2. Warszawa: PWN (in Polish)
|
[27] |
Gilewska S (1963). Relief of the Mid-Triassic escarpment in the vicinity of Będzin. IG PAN, Prace Geograficzne nr 44, Warszawa: Wydawnictwa Geologiczne, 119 (in Polish)
|
[28] |
Gillewska S (1972). Silesian-Małopolskie Uplands. In: Klimaszewski M ed. Geomorphology of Poland vol. 1. Warszawa: PWN, 232–339 (in Polish)
|
[29] |
Gilewska S (1986). Geomorphological subdivision of Poland. Przegląd Geograficzny, 58(1–2): 15–40 (in Polish)
|
[30] |
Gilewska S (1999a). Relief. In: Starkel L ed. Geografia Polski. Geography of Poland. Natural environment. Warszawa: PWN, 243–287. (in Polish)
|
[31] |
Gilewska S (1999b). Development of the environment of Poland in Tertiary. In: Starkel L ed. Geography of Poland. Natural environment. Warszawa:PWN, 38–66 (in Polish)
|
[32] |
Gilewska S, Klimek M (1997). Relief origin and age. 1: 1500000. IGiPZ PAN, Atlas Rzeczypospolitej, Warszawa: PPWK (in Polish)
|
[33] |
Guzzetti F, Reichenbach P (1994). Toward the definition of topographic divisions for Italy. Geomorphology 11:57–75
|
[34] |
Haisig J, Wilanowski S (1979). Geologic Map of Poland 1:200000 sheet Kluczbork. Warszawa: Instytut Geologiczny.
|
[35] |
Hammond E H (1954). Small-scale continental landform maps. Ann Assoc Am Geogr, 44(1): 33–42
CrossRef
Google scholar
|
[36] |
Hammond E H (1964). Analysis of properties in land form geography: an application to broad-scale land form mapping. Ann Assoc Am Geogr, 54(1): 11–19
CrossRef
Google scholar
|
[37] |
Hornig A (1955a). Formy powierzchni ziemi stworzone przez człowieka na obszarze Wyżyny Śląskiej (Landforms made by human in the Silesian Upland area). In: Wrzosek A (ed.) Górny Śląsk. Wydawnictwo Literackie, Kraków. pp. 127–149. (in Polish)
|
[38] |
Hornig A (1955b). On some monuments of inanimate nature of the Silesian Upland. Chrońmy przyrodę ojczystą 6:8–18 (in Polish)
|
[39] |
von Humboldt A (1849). Ansichten der Natur: mit wissenschaftlichen Erläuterungen. Stuttgart: J.G. Cotta'scher Verlag. 407 .
|
[40] |
Hutchinson M F (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol (Amst), 106(3-4): 211–232
CrossRef
Google scholar
|
[41] |
Hutchinson M F (2011). ANUDEM Version 5.3. User Guide. Fenner School of Environment and Society, Australian National University
|
[42] |
Iwahashi J, Pike R J (2007). Automated classification of topography from DEMs by an unsupervised nested-mean algorithm and a three-part geometric signature. Geomorphology, 86(3-4): 409–440
CrossRef
Google scholar
|
[43] |
Jania J, Dulias R, Szypuła B, Tyc A (2014). Digital Geomorphological Map of Poland 1:100000, sheet Katowice. GUGiK, Gepol, Poznań.
|
[44] |
Jania J, Szczypek T (1980). An attempt to distinguish of the eolian sediments and landforms in the selected areas of the Silesian Highland by means of the photointerpretation. Fotointerpretacja w geografii 4:25–40 (in Polish)
|
[45] |
Jasiewicz J, Stepinski T F (2013). Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182: 147–156
CrossRef
Google scholar
|
[46] |
Jenness J, Brost B, Beier P (2013). Land Facet Corridor Designer: Extension for ArcGIS. Jenness Enterprises
|
[47] |
Jorge M G, Brennand T A (2017). Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models – Two new methods. Geomorphology, 288: 148–163
CrossRef
Google scholar
|
[48] |
Karaś C, Starkel L (1958). Extent of the Middle Polish glaciation in the southern part of the Silesian Upland) Przegląd Geograficzny, 30: 263–270 (in Polish)
|
[49] |
Karaś-Brzozowska C (1960). Geomorphological characteristics of the Upper Silesian Industrial District. Warszawa: Biuletyn PAN, (in Polish)
|
[50] |
Karaś-Brzozowska C (1963). Extent of the Middle Polish glaciation in the Racibórz Basin. Przegląd Geograficzny, 35: 431–442 (in Polish)
|
[51] |
Kaziuk H, Lewandowski J (1980). Geologic Map of Poland 1:200000 sheet Kraków. Warszawa: Instytut Geologiczny.
|
[52] |
Khan F (2012). An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application. Appl Soft Comput, 12(11): 3698–3700
CrossRef
Google scholar
|
[53] |
Klimaszewski M (1947). Geomorphic map of the Southern Poland 1:1800000. Czas Geogr, 17: 133–182 (in Polish)
|
[54] |
Klimaszewski M (1991). A geomorphological comparison of structural thresholds. Wrocław-Warszawa-Kraków: Dokumentacja Geograficzna (in Polish)
|
[55] |
Klimaszewski M, ed. (1959) Geomorphological map of the Uppersilesian Industrial Region, 1:50000. Warszawa: Komitet itd. GOP PAN, (in Polish)
|
[56] |
Klimaszewski M, ed. (1972) Geomorphology of Poland vol. 1. Warszawa: PWN (in Polish)
|
[57] |
Klimek K (1966) Deglaciation of northern part of Silesia-Cracow Upland during the Middle-Polish glaciation. Warszawa: Prace Geograficzne IG PAN 53, 136 (in Polish)
|
[58] |
Kondracki J (1951). Geomorphological map of Poland, 1:2000000. Przegląd Geograficzny 23 (in Polish)
|
[59] |
Kondracki J (2001). Geografia regionalna Polski (Regional geography of Poland. Warszawa: PWN, 441 (in Polish)
|
[60] |
Kotlicka G N, Kotlicki S (1979). Geologic Map of Poland 1:200,000 sheet Gliwice. Warszawa: Instytut Geologiczny
|
[61] |
Larose D T (2005). Discovering knowledge in data: An introduction to data mining. New York: John Wiley & Sons, 240
|
[62] |
Lewandowski J (1982). Zasięg lądolodu zlodowacenia środkowopolskiego na Wyżynie Śląskiej (Extent of ice sheet of Middle-Polish glaciation in the Silesian Upland). Biuletyn Instytutu Geologicznego, 337(26): 115–136 (in Polish,)
|
[63] |
Lewandowski J (1987). Zlodowacenie Odry na Wyżynie Śląskiej (Odra glaciation in the Silesian Upland). Biuletyn Geologiczny, 31: 247–301 (in Polish)
|
[64] |
Liu F, Gao H, Pan B, Li Z, Su H (2019). Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Front Earth Sci, 13(1): 55–74
CrossRef
Google scholar
|
[65] |
Luo L, Mu L, Wang X, Li C, Ji W, Zhao J, Cai H (2013). Global detection of large lunar craters based on the CE-1 digital elevation model. Front Earth Sci, 7(4): 456–464
CrossRef
Google scholar
|
[66] |
MacMillan R A, Shary P A (2009). Landforms and landform elements in geomorphometry. In: Hengl T, Reuter H I, eds. Geomorphometry. Concepts, Software, Applications. Amsterdam: Elsevier, 227–254
|
[67] |
Mentlik P, Novotna M (2010). Elementary forms and 'scientific reliability' as an innovative approach to geomorphological mapping. Journal of Maps 6(1):564–583
|
[68] |
Minár J, Evans I S (2008). Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95(3-4): 236–259
CrossRef
Google scholar
|
[69] |
Mitášová H, Hofierka J, Zlocha M, Iverson R L (1996). Modelling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Syst, 10(5): 629–641
CrossRef
Google scholar
|
[70] |
Moore I D, Grayson R B, Ladson A R (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Processes, 5(1): 3–30
CrossRef
Google scholar
|
[71] |
MPHP (Digital Map of Hydrographical Division of Poland) (2010). IMiGW, Warszawa
|
[72] |
Niemann K O, Howes D E (1991). Applicability of digital terrain models for slope stability assessment. ITC J, 3: 127–137
|
[73] |
Ortuño M, Guinau M, Calvet J, Furdada G, Bordonau J, Ruiz A, Camafort M (2017). Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology, 295: 364–382
CrossRef
Google scholar
|
[74] |
Pike R J (1988). The geometric signature: quantifying landslide-terrain types from digital elevation models. Math Geol, 20(5): 491–511
CrossRef
Google scholar
|
[75] |
Piloyan A, Konečný M (2017). Semi-automated classification of landform elements in Armenia based on SRTM DEM using k-means unsupervised classification. Quaest Geogr, 36(1): 93–103
CrossRef
Google scholar
|
[76] |
Speight J G (1990). Landform. In: McDonald R C, Isbell R F, Speight I G, Walker J, Hop M S eds. Australian Soil and Land Survey Field Handbook. Melbourne: Inkata Press, 9–57
|
[77] |
Starkel L (1980). Geomorphological Outline Map of Poland, 1:500000. Warszawa: IGiZP PAN
|
[78] |
Szaflarski J (1955). Overview of the relief development of the Silesian Upland. In: Wrzosek A ed. Górny Śląsk. Kraków: Wydawnictwo Literackie, 65–121 (in Polish)
|
[79] |
Szczypek T (1977). Eolic activities and deposits in the southern part of the Silesian Upland. Katowice: Prace Naukowe (in Polish)
|
[80] |
Szczypek T (1986a). Aeolian cover sands in the northern part of the Silesian Upland. Geographia. Studia et Dissertationes, 9: 45–56 (in Polish)
|
[81] |
Szczypek T (1986b). Dune forming processes in the middle part of the Cracow-Wieluń Upland against a background of the neighbouring area. Katowice: Prace Naukowe UŚ 823. 183 (in Polish)
|
[82] |
Szczypek T (1988). Aeolian activity in the eastern part of the Silesian Upland on the example of the Bukowno vicinity. Geographia. Studia et Dissertationes, 11: 7–22 (in Polish)
|
[83] |
Szczypek T, Wach J (1991). Development of the modern dune in the strong human impact conditions. Katowice: Prace Naukowe (in Polish)
|
[84] |
Szczypek T, Wach J (1992). Human impact and course of natural morphogenetic processes on the example of Silesian Upland. Kształtowanie środowiska geograficznego i ochrony przyrody na obszarach uprzemysłowionych i zurbanizowanych., 4: 5–12 (in Polish)
|
[85] |
Szczypek T, Wach J (1993). Anthropogenic scarp dune at Bukowno on the Silesian Upland in the period 1989–1993. Katowice: Uniwersytet Śląski, 50 p. (in Polish)
|
[86] |
Szypuła B (2009). Badanie odporności skał Wyżyny Śląskiej z zastosowaniem młotka Schmidta (Research on the rock strength of the Silesian Upland using Schmidt hammer). Geographia. Studia et Dissertationes, 31: 65–80 (in Polish, with English summary)
|
[87] |
Szypuła B (2017). Quantitative studies of the morphology of the south Poland using Relief Index (RI). Open Geosci, 9(1): 509–524
CrossRef
Google scholar
|
[88] |
Tang G, Li F (2008). Landform Classification of the Loess Plateau Based on Slope Spectrum from Grid DEMs. In: Advances in Digital Terrain Analysis (Lecture Notes in Geoinformation and Cartography), 107–124
|
[89] |
Tobler W (1970). A computer movie simulating urban growth in the Detroit region. Econ Geogr, 46(2): 234–240
CrossRef
Google scholar
|
[90] |
Urbański J (2012). GIS in the environmental research. Gdańsk: Uniwersytetu Gdańskiego, 252 (in Polish)
|
[91] |
Van Lopik J R, Kolb C R (1959). A technique for preparing desert terrain analogs. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS, Tech. Rept. 3–506
|
[92] |
Weiss A (2001). Topographic Position and Landform Analysis. Poster presentation, In: ESRI User Conference. San Diego
|
[93] |
Wieczorek M (2008). The classification of landforms based on Digital Elevation Model. Dissertation for the Doctoral Degree. Wrocław: Uniwersytet Wrocławski, 104 (in Polish)
|
[94] |
Wieczorek M (2011). An influence of spatial range of input data set on terrain relief form classification homogeneity for glacial area. In: Ruas A ed. Advances in Cartography and GIScience, Vol. 2 Selection from ICC 2011, Paris: Springer, 357–369
|
[95] |
Wieczorek M, Migoń P (2014). Automatic relief classification versus expert and field based landform classification for the medium-altitude mountain range, the Sudetes, SW Poland. Geomorphology, 206: 133–146
CrossRef
Google scholar
|
[96] |
Wilson J P, Gallant J (2000). Terrain analysis. Principles and applications. London: John Wiley & Sons Inc., 479 .
|
[97] |
Wood W F, Snell J B (1960). A quantitative system for classifying landforms. Technical Report EP-124. U.S. Army Quartermaster Research and Engineering Center, 20 .
|
[98] |
Yang X, Li M, Na J, Liu K (2017). Gully boundary extraction based on multidirectional hill‐shading from high-resolution DEMs. Trans GIS, 21(6): 1204–1216
CrossRef
Google scholar
|
[99] |
Żmuda S (1973). Anthropogenic changes in the natural environment of the Upper Silesian conurbation. Warszawa-Kraków: PWN, 207 (in Polish)
|
/
〈 | 〉 |