The 2015/16 El Niño-related glacier changes in the tropical Andes

Bijeesh Kozhikkodan VEETTIL, Jefferson Cardia SIMÕES

PDF(673 KB)
PDF(673 KB)
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (2) : 422-429. DOI: 10.1007/s11707-018-0738-4
RESEARCH ARTICLE
RESEARCH ARTICLE

The 2015/16 El Niño-related glacier changes in the tropical Andes

Author information +
History +

Abstract

Significant changes in the area and snowline altitude of two glacierized mountains – Nevado Champara (Cordillera Blanca, Peru) and Cerro Tilata (Cordillera Real, Bolivia) – in the tropical Andes, before and after the recent El Niño in 2015/16 period, have been analysed using Sentinel 2A and Landsat data. It is seen that the recent El Niño has been accompanied by higher fluctuation in glacier coverage on Nevado Champara and the loss of glacier coverage on Cerro Tilata was very high during the past 16 years. Rise in snowline altitude of selected glaciers was very high after the 2015/16 El Niño. Increase in the area covered by snow and ice during the La Niña periods were not enough to cover the ice loss occurred during the previous El Niño events and the strongest El Niño in 2015/16 was followed by a significant loss of ice-covered areas in the tropical Andes. Freshwater resources in this region will be affected in the near future if the current trends in glacier decline continue. Adaptation strategies needs to be implemented to reduce the impacts of the continuing loss of glacierized on regional communities in the tropical Andean region.

Keywords

ENSO / tropical Andes / glacier loss / snowline altitude / Sentinel 2A

Cite this article

Download citation ▾
Bijeesh Kozhikkodan VEETTIL, Jefferson Cardia SIMÕES. The 2015/16 El Niño-related glacier changes in the tropical Andes. Front. Earth Sci., 2019, 13(2): 422‒429 https://doi.org/10.1007/s11707-018-0738-4

References

[1]
Anderson E P, Marengo J, Villalba R, Halloy S, Young B, Cordero D, Gast F, Jaimes E, Ruiz D (2011). Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog S K, Martínez R, Jørgensen P M, Tiessen H, eds. Climate Change and Biodiversity in the Tropical Andes. San Jose dos Campos and Paris: Inter-American Institute for Global Change Research and Scientific Committee on Problems of the Environment
[2]
Arnaud Y, Muller F, Vuille M, Ribstein P (2001). El Niño – Southern Oscillation (ENSO) influence on a Sajama volcano glacier (Bolivia) from 1936 to 1998 as seen from Landsat data and aerial photography. J Geophys Res, 106(D16): 17773–17784
CrossRef Google scholar
[3]
Baraer M, Mark B G, McKenzie J M, Condom T, Bury J, Huh K I, Portocarrero C, Gómez J, Rathay S (2012). Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol, 58(207): 134–150
CrossRef Google scholar
[4]
Baraer M, McKenzie J, Mark B G, Gordon R, Bury J, Condom T, Gomez J, Knox S, Fortner S K (2015). Contribution of groundwater to the outflow from ungauged glaciarized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol Processes, 29(11): 2561–2581
CrossRef Google scholar
[5]
Bradley R S, Vuille M, Diaz H F, Vergara W (2006). Threats to water supplies in the topical Andes. Science, 312(5781): 1755–1756
CrossRef Google scholar
[6]
Bury J T, Mark B G, McKenzie J M, French A, Baraer M, Huh K I, Zapata Luyo M A, Gómez López R J (2011). Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Change, 105(1–2): 179–206 doi:10.1007/s10584-010-9870-1
[7]
Buytaert W, Celleri R, de Bievre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006). Human impact on the hydrology of the Andean paramos. Earth Sci Rev, 79(1–2): 53–72
CrossRef Google scholar
[8]
Carey M (2005). Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change, 47(2–4): 122–134
CrossRef Google scholar
[9]
Chevallier P, Pouyaud B, Suarez W, Condom T (2011). Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change, 11(S1): 179–187
CrossRef Google scholar
[10]
Cook SJ, Kougkoulos I, Edwards LA, Dortch J, Hoffmann D (2016). Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere, 10: 2399–2413 doi:10.5194/tc-10-2399-2016
[11]
Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017). Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS One, 12(5): e0175814
CrossRef Google scholar
[12]
Epstein P R, Diaz H F, Elias S, Grabherr G, Graham N E, Martens W J M, Mosley-Thompson E, Susskind J (1998). Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc, 79(3): 409–417 doi:10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2
[13]
Favier V, Wagnon P, Ribstein P (2004). Glaciers in the outer and inner tropics: a different behaviour but a common response to climate forcing. Geophys Res Lett, 31(16): L16403
CrossRef Google scholar
[14]
Francou B, Vuille M, Favier V, Cáceres B (2004). New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 0°28'S. J Geophys Res, 109(D18 D18106): D18106
CrossRef Google scholar
[15]
Francou B, Vuille M, Wagnon P, Mendoza J, Sicart J E (2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J Geophys Res, 108(D5): 4154
CrossRef Google scholar
[16]
Frey H, Paul F, Strozzi T (2012). Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens Environ, 124: 832–843
CrossRef Google scholar
[17]
Garreaud R D, Vuille M, Compagnucci R, Marengo J (2009). Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol, 281(3–4): 180–195
CrossRef Google scholar
[18]
Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley R S, Clague J J, Vuille M, Buytaert W, Cayan D R, Greenwood G, Mark B K, Milner A M, Weingartner R, Winder M (2017). Toward mountains without permanent snow and ice. Earths Futur, 5(5): 418–435
CrossRef Google scholar
[19]
Mark B G, Bury J, McKenzie J M, French A, Baraer M (2010). Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann Assoc Am Geogr, 100(4): 794–805
CrossRef Google scholar
[20]
Maussion F, Gurgiser M, Großhauser M, Kaser G, Marzeion B (2015). ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere, 9(4): 1663–1683 doi:10.5194/tc-9-1663-2015
[21]
Mountain Research Initiative EDW Working Group (2015). Elevation-dependent warming in mountain regions of the world. Nat Clim Chang, 5(5): 424–430
CrossRef Google scholar
[22]
Polk M H, Young K R, Baraer M, Mark B G, McKenzie J M, Bury J, Carey M (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl Geogr, 78: 94–103
CrossRef Google scholar
[23]
Poveda G, Rojas W, Quiñones M L, Vélez D, Mantilla R I, Ruiz D, Zulunga J S, Rua G L (2001). Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Perspect, 109: 489–493
[24]
Rabatel A, Bermejo A, Loarte E, Soruco A, Gomez J, Leonardini G, Vincent C, Sicart J E (2012). Can snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol, 58(212): 1027–1036
CrossRef Google scholar
[25]
Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos J L, Basantes R, Vuille M, Sicart J E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot G, Maisincho L, Mendoza J, Menegoz M, Ramírez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 7(1): 81–102
CrossRef Google scholar
[26]
Ramírez E, Francou B, Ribstein P, Descloitres M, Guérin R, Mendoza J, Gallaire R, Pouyaud B, Jordan E (2001). Small glaciers disappearing in the tropical Andes: a case-study in Bolivia: Glaciar Chacaltaya (16°S). J Glaciol, 47(157): 187–194 doi:10.3189/172756501781832214
[27]
Rangecroft S, Harrison S, Anderson K, Magrath J, Castel A P, Pacheco P (2013). Climate change and water resources in arid mountains: an example from the Bolivian Andes. Ambio, 42(7): 852–863
CrossRef Google scholar
[28]
Silverio W, Jaquet J M (2005). Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ, 95(3): 342–350
CrossRef Google scholar
[29]
Somers L D, Gordon R P, McKenzie J M, Lautz L K, Wigmore O, Glose A, Glas R, Aubry-Wake C, Mark B, Baraer M, Condom T (2016). Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol Processes, 30(17): 2915–2929
CrossRef Google scholar
[30]
Soruco A, Vincent C, Rabatel A, Francou B, Thibert E, Sicart J E, Condom T (2015). Contribution of glacier runoff to water resources of La Paz city, Bolivia (16oS). Ann Glaciol, 56(70): 147–154
CrossRef Google scholar
[31]
Tad Pfeffer W, Arendt A A, Bliss A, Bolch T, Cogley J G, Gardner A S, Hagen J O, Hock R, Kaser G, Kienholz C, Miles E S, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup B H, Rich J, Sharp M, the Randolph Consortium (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. J Glaciol, 60(221): 537–552 doi:10.3189/2014JoG13J176
[32]
Thompson L G, Davis M E, Mosley-Thompson E, Beaudon E, Porter S E, Kutuzov S, Lin P N, Mikhalenko V N, Mountain K R (2017). Impacts of recent warming and the 2015/2016 El Niño on tropical Peruvian ice fields. J Geophys Res D Atmospheres,
CrossRef Google scholar
[33]
Veettil B K, Bremer U F, de Souza S F, Maier É L B, Simões J C (2016b). Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theor Appl Climatol, 125(3–4): 757–768
CrossRef Google scholar
[34]
Veettil B K, Bremer U F, Souza S F, Maier É L B, Simões J C (2016a). Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto Int, 31(5): 544–556
CrossRef Google scholar
[35]
Veettil B K, de Souza S F, Simões J C, Ruiz-Pereira S F (2017d). Decadal evolution of glaciers and glacial lakes in the Apolobamba-Carabaya region, tropical Andes (Bolivia-Peru). Geogr Ann, Ser A, 99(3): 193–206 doi:10.1080/04353676.2017.1299577
[36]
Veettil B K, Kamp U (2017). Remote sensing of glaciers in the tropical Andes: a review. Int J Remote Sens, 38(23): 7101–7137
CrossRef Google scholar
[37]
Veettil B K, Maier É L B, Bremer U F, de Souza S F (2014). Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Clim Dyn, 43(12): 3439–3448
CrossRef Google scholar
[38]
Veettil B K, Wang S, Bremer U F, de Souza S F, Simões J C (2017b). Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theor Appl Climatol, 129(1–2): 213–227
CrossRef Google scholar
[39]
Veettil B K, Wang S, de Souza S F, Bremer U F, Simões J C (2017a). Glacier monitoring and glacier-climate interactions in the tropical Andes: A review. J S Am Earth Sci, 77: 218–246
CrossRef Google scholar
[40]
Veettil B K, Wang S, Simões J C, Pereira S R P, Souza S F (2017c). Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru. Int J Climatol, doi:10.1002/joc.5226
[41]
Vergara W, Deeb A M, Valencia A M, Bradley R S, Francou B, Zarzar A, Grünwaldt A, Haeussling S M (2007). Economic impacts of rapid glacier retreat in the Andes. Eos (Wash DC), 88(25): 261–264
CrossRef Google scholar
[42]
Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobson D, Soruco A, Villacis M, Yarleque C, Timm O E, Condom T, Salzmann N, Sicart J E (2018). Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth Sci Rev, 176: 195–213
CrossRef Google scholar
[43]
Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B G, Bradley R S (2008). Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev, 89(3–4): 79–96
CrossRef Google scholar
[44]
Zemp M, Frey H, Gärtner-Roer I, Nussbaumer S U, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrom A P, Anderson B, Bajracharya S, Baroni C, Braun L N, Cáceres B E, Casassa G, Cobos G, Dávila L R, Delgado Granados H, Demuth M N, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen J O, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin V V, Portocarrero C A, Prinz R, Sangewar C V, Severskiy I, Sigurdsson O, Soruco A, Usubaliev R, Vincent C (2015). Historically unprecedented global glacier decline in the early 21st century. J Glaciol, 61(228): 745–762
CrossRef Google scholar
[45]
Zhang G, Yao T, Piao S, Bolch T, Xie H, Chen D, Gao Y, O’Reilly C M, Shum C K, Yang K, Yi S, Lei Y, Wang W, He Y, Shang K, Yang X, Zhang H (2017). Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett, 44(1): 252–260
CrossRef Google scholar

Acknowledgement

Authors acknowledge Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS (processo: 17/2551-0000518-0), Brazil, for research support.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(673 KB)

Accesses

Citations

Detail

Sections
Recommended

/