Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain

Kun JIA , Jingcan LIU , Yixuan TU , Qiangzi LI , Zhiwei SUN , Xiangqin WEI , Yunjun YAO , Xiaotong ZHANG

Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (2) : 327 -335.

PDF (2472KB)
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (2) : 327 -335. DOI: 10.1007/s11707-018-0734-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain

Author information +
History +
PDF (2472KB)

Abstract

The newly launched GF-2 satellite is now the most advanced civil satellite in China to collect high spatial resolution remote sensing data. This study investigated the capability and strategy of GF-2 multispectral data for land use and land cover (LULC) classification in a region of the North China Plain. The pixel-based and object-based classifications using maximum likelihood (MLC) and support vector machine (SVM) classifiers were evaluated to determine the classification strategy that was suitable for GF-2 multispectral data. The validation results indicated that GF-2 multispectral data achieved satisfactory LULC classification performance, and object-based classification using the SVM classifier achieved the best classification accuracy with an overall classification accuracy of 94.33% and kappa coefficient of 0.911. Therefore, considering the LULC classification performance and data characteristics, GF-2 satellite data could serve as a valuable and reliable high-resolution data source for land surface monitoring. Future works should focus on improving LULC classification accuracy by exploring more classification features and exploring the potential applications of GF-2 data in related applications.

Keywords

land use and land cover / classification / GF-2 / North China Plain / multispectral data

Cite this article

Download citation ▾
Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain. Front. Earth Sci., 2019, 13(2): 327-335 DOI:10.1007/s11707-018-0734-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adam E, Mutanga O, Odindi J, Abdel-Rahman E M (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int J Remote Sens, 35(10): 3440–3458

[2]

Aguilar M, Bianconi F, Aguilar F, Fernández I (2014). Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens, 6(5): 3554–3582

[3]

Baatz M, Schäpe M (2000). Multiresolution segmentation- An optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G, eds. Angewandte Geographische Informations-Verarbeitung XII. Karlsruhe: Wichmann Verlag, 12–23

[4]

Benz U C, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens, 58(3–4): 239–258

[5]

Burges C J C (1998). A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov, 2(2): 121–167

[6]

Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015). Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens, 103: 7–27

[7]

Congalton R G, Green K (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Florida: Lewis Publishers

[8]

Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H, Gardner J A, Adler-Golden S M, Matthew M W, Berk A, Bernstein L S, Acharya P K, Miller D, Lewis P (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: 2002 IEEE International Geoscience and Remote Sensing Symposium & 24th Canadian Symposium on Remote Sensing. Toronto, Canada: IEEE Press

[9]

Duda R O, Hart P E (1973). Pattern Classification and Scene Analysis. New York: Wiley

[10]

Foody G M (2009). Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ, 113(8): 1658–1663

[11]

Foody G M (2013). Ground reference data error and the mis-estimation of the area of land cover change as a function of its abundance. Remote Sens Lett, 4(8): 783–792

[12]

Foody G M, Campbell N A, Trodd N M, Wood T F (1992). Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm Eng Remote Sensing, 58: 1335–1341

[13]

Foody G M, Mathur A (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens, 42(6): 1335–1343

[14]

Friedl M A, Brodley C E (1997). Decision tree classification of land cover from remotely sensed data. Remote Sens Environ, 61(3): 399–409

[15]

Gebbers R, Adamchuk V I (2010). Precision agriculture and food security. Science, 327(5967): 828–831

[16]

Gong P, Wang J, Yu L, Zhao Y C, Zhao Y Y, Liang L, Niu Z G, Huang X M, Fu H H, Liu S, Li C C, Li X Y, Fu W, Liu C X, Xu Y, Wang X Y, Cheng Q, Hu L Y, Yao W B, Zhang H, Zhu P, Zhao Z Y, Zhang H Y, Zheng Y M, Ji L Y, Zhang Y W, Chen H, Yan A, Guo J H, Wang L, Liu X J, Shi T T, Zhu M H, Chen Y L, Yang G W, Tang P, Xu B, Giri C, Clinton N, Zhu Z L, Chen J, Chen J (2013). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34(7): 2607–2654

[17]

Gong P, Yu L, Li C, Wang J, Liang L, Li X, Ji L, Bai Y, Cheng Y, Zhu Z (2016). A new research paradigm for global land cover mapping. Ann GIS, 22(2): 87–102 doi:10.1080/19475683.2016.1164247

[18]

Hansen M C, Defries R S, Townshend J R G, Sohlberg R (2000). Global land cover classification at 1km spatial resolution using a classification tree approach. Int J Remote Sens, 21(6–7): 1331–1364

[19]

Jia K, Li Q Z, Tian Y C, Wu B F, Zhang F F, Meng J H (2012). Crop classification using multi-configuration SAR data in the North China Plain. Int J Remote Sens, 33(1): 170–183

[20]

Jia K, Liang S, Zhang N, Wei X Q, Gu X F, Zhao X, Yao Y J, Xie X (2014a). Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J Photogramm Remote Sens, 93: 49–55

[21]

Jia K, Wei X Q, Gu X F, Yao Y J, Xie X H, Li B (2014b). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int, 29(8): 941–951

[22]

Jia K, Wu B F, Li Q Z (2013). Crop classification using HJ satellite multispectral data in the North China Plain. J Appl Remote Sens, 7(1): 073576

[23]

Jia K, Wu B F, Tian Y C, Zeng Y, Li Q Z (2011). Vegetation classification method with biochemical composition estimated from remote sensing data. Int J Remote Sens, 32(24): 9307–9325

[24]

Li Q, Cao X, Jia K, Zhang M, Dong Q (2014). Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. Int J Remote Sens, 35(16): 6076–6088

[25]

Liang S (2008). Advances in Land Remote Sensing System, Modeling Inversion and Application. Dordrecht: Springer

[26]

Liu J Y, Liu M L, Zhuang D F, Zhang Z X, Deng X Z (2003). Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D Earth Sci, 46: 373–384

[27]

Lu D, Weng Q (2007). A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens, 28(5): 823–870

[28]

Ma L, Li M, Ma X, Cheng L, Du P, Liu Y (2017). A review of supervised object-based land-cover image classification. ISPRS J Photogramm Remote Sens, 130: 277–293

[29]

Mathur A, Foody G (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. Int J Remote Sens, 29(8): 2227–2240

[30]

Miller S N, Phillip Guertin D, Goodrich D C (2007). Hydrologic modeling uncertainty resulting from land cover misclassification. J Am Water Resour Assoc, 43(4): 1065–1075

[31]

Mountrakis G, Im J, Ogole C (2011). Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens, 66(3): 247–259

[32]

Pal M, Foody G M (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J Sel Top Appl Earth Obs Remote Sens, 5(5): 1344–1355

[33]

Pal M, Mather P M (2005). Support vector machines for classification in remote sensing. Int J Remote Sens, 26(5): 1007–1011

[34]

Running S W (2008). Ecosystem disturbance, carbon, and climate. Science, 321(5889): 652–653

[35]

Schmidt M, Pringle M, Devadas R, Denham R, Tindall D (2016). A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sens, 8(4): 312

[36]

Tso B, Mather P M (2001). Classification Methods for Remotely Sensed Data. London: Taylor and Francis

[37]

Yan L, Roy D P (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens Environ, 172: 67–86

[38]

Yang J, Gong P, Fu R, Zhang M H, Chen J M, Liang S L, Xu B, Shi J C, Dickinson R (2013). The role of satellite remote sensing in climate change studies. Nat Clim Chang, 3(10): 875–883

[39]

Yu L, Su J, Li C, Wang L, Luo Z, Yan B (2018). Improvement of moderate resolution land use and land cover classification by introducing adjacent region features. Remote Sens, 10(3): 414

[40]

Zhang H, Li Q, Liu J, Shang J, Du X, Zhao L, Wang N, Dong T (2017). Crop classification and acreage estimation in North Korea using phenology features. GIsci Remote Sens, 54(3): 381–406

[41]

Zhang L, Jia K, Li X S, Yuan Q Z, Zhao X F (2014). Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sens Lett, 5(1): 73–82

[42]

Zhang M W, Zhou Q B, Chen Z X, Liu J, Zhou Y, Cai C F (2008). Crop discrimination in northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int J Appl Earth Obs Geoinf, 10(4): 476–485

[43]

Zhong L, Hu L, Yu L, Gong P, Biging G S (2016). Automated mapping of soybean and corn using phenology. ISPRS J Photogramm Remote Sens, 119: 151–164

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2472KB)

1163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/