Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions

Jingjie ZANG , Yanyan LEI , Huan YANG

Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (4) : 862 -876.

PDF (1499KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (4) : 862 -876. DOI: 10.1007/s11707-018-0722-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions

Author information +
History +
PDF (1499KB)

Abstract

Proxies based on glycerol dialkyl glycerol tetraethers (GDGTs), a suite of membrane lipids occurring ubiquitously in soils, have generated increasing interest in quantitative paleo-environmental reconstruction. Hot and dry climates are likely to have occurred in the geological past; however, the limitations and applicability of these proxies to hot and dry environments are still unknown. In this study, we analyzed the GDGT distribution in the Turpan (TRP) basin of China, where the highest soil temperature can be approximately 70°C, and the mean annual precipitation (MAP) is 15.3 mm. We compared GDGT-based proxies among TRP soils, Nanyang (NY) soils, and Kunming (KM) soils; these three sites exhibit similar mean annual air temperature (MAAT) albeit contrasting temperature seasonality and MAP. Archaeal isoprenoidal GDGTs (isoGDGTs) dominate over bacterial branched GDGTs (brGDGTs) in most TRP soils; this is a characteristic GDGT distribution pattern for soils from dry regions globally. Another feature is the anomalously high GDGT-0/crenarchaeol ratio, which is generally attributed to the contribution of anaerobic methanogenic archaea by previous studies; however, these anaerobic archaea are unlikely to be highly abundant in the dry TRP soils, indicating that certain uncultured halophilic Euryarchaeota are likely to produce a significant amount of GDGT-0 that finally results in a high GDGT-0/Cren ratio. The changes in the salinity of the TRP soils appear to be an important factor affecting the MBT’5ME and the relative abundance of 6- vs. 5-methyl pentamethylated brGDGTs (IRIIa’). This is likely to introduce certain scatters in the correlations between MBT’5ME and MAAT and that between IRIIa’ and pH determined at the global scale. A comparison of the MBT’5ME-inferred temperature between TRP, NY, and KM soils does not indicate a significant bias toward summer temperature, indicating that brGDGT paleo-thermometers in soils could reflect the MAAT.

Keywords

GDGTs / Turpan soils / semi-arid and arid areas / salinity / MBT’5ME

Cite this article

Download citation ▾
Jingjie ZANG, Yanyan LEI, Huan YANG. Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions. Front. Earth Sci., 2018, 12(4): 862-876 DOI:10.1007/s11707-018-0722-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auguet J C, Barberan A, Casamayor E O (2010). Global ecological patterns in uncultured Archaea. ISME J, 4(2): 182–190

[2]

Balsam W L, Ellwood B B, Ji J F, Williams E R, Long X Y, El Hassani A (2011). Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate. Quat Sci Rev, 30(19−20): 2732–2744

[3]

Besseling M A, Hopmans E C, Boschman R C, Sinninghe Damsté J S, Villanueva L (2018). Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosci, 15(13): 4047–4064

[4]

Blaga C I, Reichart G J, Heiri O, Sinninghe Damsté J S (2009). Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J Paleolimnol, 41(3): 523–540

[5]

Brassell S C, Eglinton G, Marlowe I T, Pflaumann U, Sarnthein M (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature, 320(6058): 129–133

[6]

Dang X Y, Yang H, Naafs B D A, Pancost R D, Xie S C (2016). Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36

[7]

De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe Damsté J S (2013). Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org Geochem, 54(1): 78–82

[8]

De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S (2014a). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112

[9]

De Jonge C, Stadnitskaia A, Hopmans E C, Cherkashov G, Fedotov A, Sinninghe Damsté J S (2014b). In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim Cosmochim Acta, 125(1): 476–491

[10]

Deng L H, Jia G D, Jin C F, Li S J (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17

[11]

Elling F J, Könneke M, Nicol G W, Stieglmeier M, Bayer B, Spieck E, de la Torre J R, Becker K W, Thomm M, Prosser J I, Herndl G J, Schleper C, Hinrichs K U (2017). Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol, 19(7): 2681–2700

[12]

Heller F, Liu T S (1982). Magnetostratigraphical dating of loess deposits in China. Nature, 300(5891): 431–433

[13]

Hopmans E C, Weijers J W H, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1–2): 107–116

[14]

Huang X Y, Meyers P A, Xue J T, Gong L F, Wang X X, Xie S C (2015). Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China. Geochim Cosmochim Acta, 154(7): 212–228

[15]

Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041

[16]

Jiang H C, Mao X, Xu H Y, Thompson J, Wang P, Ma X L (2011). Last glacial pollen record from Lanzhou (Northwestern China) and possible forcing mechanisms for the MIS 3 climate change in Middle to East Asia. Quat Sci Rev, 30(5−6): 769–781

[17]

Kang S C, Wang F Y, Morgenstern U, Zhang Y L, Grigholm B, Kaspari S, Schwikowski M, Ren J W, Yao T D, Qin D H, Mayewski P A (2015). Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 9(3): 1213–1222

[18]

Kemp D B, Robinson S A, Crame J A, Francis J E, Ineson J, Whittle R J, Bowman V, O’Brien C (2014). A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology, 42(7): 583–586

[19]

Lei Y Y, Yang H, Dang X Y, Zhao S J, Xie S C (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94

[20]

Leng M J, Marshall J D (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev, 23(7–8): 811–831

[21]

Lu H Y, Wu N Q, Yang X D, Jiang H, Liu K B, Liu T S (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China. I: Phytolith-based transfer functions. Quat Sci Rev, 25(9–10): 945–959

[22]

Menges J, Huguet C, Alcañiz J M, Fietz S, Sachse D, Rosell-Melé A (2014). Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula. Biogeosciences, 11(10): 2571–2581

[23]

Miranda M C C, Rossetti D F, Pessenda L C R (2009). Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil): facies, d13C, d15N and C/N. Palaeogeogr Palaeoclimatol Palaeoecol, 282(4): 19–31

[24]

Pancost R D, McClymont E L, Bingham E M, Roberts Z, Charman D J, Hornibrook E R, Blundell A, Chambers F M, Lim K L, Evershed R P (2011). Archaeol as a methanogen biomarker in ombrotrophic bogs. Org Geochem, 42(10): 1279–1287

[25]

Pancost R D, Taylor K W R, Inglis G N, Kennedy E M, Handley L, Hollis C J, Crouch E M, Pross J, Huber M, Schouten S, Pearson P N, Morgans H E G, Raine J I (2013). Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand. Geochem Geophys Geosyst, 14(12): 5413–5429

[26]

Pearson A, Huang Z, Ingalls A E, Romanek C S, Wiegel J, Freeman K H, Smittenberg R H, Zhang C L (2004). Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol, 70(9): 5229–5237

[27]

Pearson A, Pi Y D, Zhao W D, Li W J, Li Y L, Inskeep W, Perevalova A, Romanek C, Li S G, Zhang C L (2008). Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol, 74(11): 3523–3532

[28]

Pendall E, Markgraf V, White J W C, Dreier M, Kenny R (2001). Multiproxy record of Late Pleistocene Holocene climate and vegetation changes from a peat bog in Patagonia. Quat Res, 55(2): 168–178

[29]

Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H B, Gu Z Y, Schouten S, Sinninghe Damsté J S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301(1–2): 256–264

[30]

Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96(11): 215–229

[31]

Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem, 54(1): 19–61

[32]

Sinninghe Damsté J S, Ossebaar J, Schouten S, Verschuren D (2012). Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat Sci Rev, 50(6): 43–54

[33]

Sinninghe Damsté J S, Rijpstra W I, Hopmans E C, Foesel B U, Wust P K, Overmann J, Tank M, Bryant D A, Dunfield P F, Houghton K, Stott M B (2014). Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4. Appl Environ Microbiol, 80(17): 5207–5218

[34]

Tang C Y, Yang H, Dang X Y, Xie S C (2017). Comparison of paleotemperature reconstructions using microbial tetraether thermometers of the Chinese loess-paleosol sequence for the past 350000 years. Sci China Earth Sci, 60(6): 1159–1170

[35]

ter Braak C J F, Smilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA. 500

[36]

Thomas E K, Clemens S C, Sun Y B, Prell W L, Huang Y S, Gao L, Loomis S, Chen G S, Liu Z Y (2016). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth Planet Sci Lett, 455: 196–206

[37]

Thornton S F, McManus J (1994). Application of organic carbon and nitrogen stable isotope and C/N Ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci, 38(3): 219–233

[38]

Újvári G, Kok J F, Varga G, Kovács J (2016). The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth Sci Rev, 154: 247–278

[39]

Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández R, Enríquez-Aragón J, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles, 12(2): 247–254

[40]

Wang H Y, Liu W G, Lu H X (2016). Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org Geochem, 98: 118–130

[41]

Wang H Y, Liu W G, Zhang C L (2014). Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: implications for palaeorainfall reconstructions on the Chinese Loess Plateau. Biogeosciences, 11(23): 6755–6768

[42]

Wang H Y, Liu W G, Zhang C L, Jiang H C, Dong H L, Lu H X, Wang J X (2013). Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai-Tibetan Plateau. Org Geochem, 54: 69–77

[43]

Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182): 1090–1093

[44]

Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damste J S (2006a). Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8(4): 648–657

[45]

Weijers J W H, Schouten S, Spaargaren O C, Sinninghe Damsté J S (2006b). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12): 1680–1693

[46]

Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713

[47]

Willard D A, Weimer L M, Riegel W L (2001). Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Rev Palaeobot Palynol, 113(4): 213–235

[48]

Wu F L, Fang X M, Ma Y Z, Herrmann M, Mosbrugger V, An Z, Miao Y (2007). Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet Sci Lett, 257(1–2): 160–169

[49]

Xie S C, Pancost R D, Chen L, Evershed R P, Yang H, Zhang K X, Huang J H, Xu Y D (2012). Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291–294

[50]

Yang H, X X, Ding W H, Lei Y Y, Dang X Y, Xie S C (2015a). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia. Org Geochem, 82: 42–53

[51]

Yang H, Pancost R D, Dang X Y, Zhou X Y, Evershed R P, Xiao G Q, Tang C Y, Gao L, Guo Z T, Xie S C (2014). Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69

[52]

Yang H, Pancost R D, Jia C L, Xie S C (2016). The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols. Geomicrobiol J, 33(2): 98–109

[53]

Yang H, Xiao W J, Jia C L, Xie S (2015b). Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils. Front Earth Sci, 9(1): 13–25

[54]

Zielinski U, Gersonde R (1997). Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol, 129(3–4): 213–250

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1499KB)

1361

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/