Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions

Jingjie ZANG, Yanyan LEI, Huan YANG

PDF(1499 KB)
PDF(1499 KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (4) : 862-876. DOI: 10.1007/s11707-018-0722-z
RESEARCH ARTICLE

Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions

Author information +
History +

Abstract

Proxies based on glycerol dialkyl glycerol tetraethers (GDGTs), a suite of membrane lipids occurring ubiquitously in soils, have generated increasing interest in quantitative paleo-environmental reconstruction. Hot and dry climates are likely to have occurred in the geological past; however, the limitations and applicability of these proxies to hot and dry environments are still unknown. In this study, we analyzed the GDGT distribution in the Turpan (TRP) basin of China, where the highest soil temperature can be approximately 70°C, and the mean annual precipitation (MAP) is 15.3 mm. We compared GDGT-based proxies among TRP soils, Nanyang (NY) soils, and Kunming (KM) soils; these three sites exhibit similar mean annual air temperature (MAAT) albeit contrasting temperature seasonality and MAP. Archaeal isoprenoidal GDGTs (isoGDGTs) dominate over bacterial branched GDGTs (brGDGTs) in most TRP soils; this is a characteristic GDGT distribution pattern for soils from dry regions globally. Another feature is the anomalously high GDGT-0/crenarchaeol ratio, which is generally attributed to the contribution of anaerobic methanogenic archaea by previous studies; however, these anaerobic archaea are unlikely to be highly abundant in the dry TRP soils, indicating that certain uncultured halophilic Euryarchaeota are likely to produce a significant amount of GDGT-0 that finally results in a high GDGT-0/Cren ratio. The changes in the salinity of the TRP soils appear to be an important factor affecting the MBT’5ME and the relative abundance of 6- vs. 5-methyl pentamethylated brGDGTs (IRIIa’). This is likely to introduce certain scatters in the correlations between MBT’5ME and MAAT and that between IRIIa’ and pH determined at the global scale. A comparison of the MBT’5ME-inferred temperature between TRP, NY, and KM soils does not indicate a significant bias toward summer temperature, indicating that brGDGT paleo-thermometers in soils could reflect the MAAT.

Keywords

GDGTs / Turpan soils / semi-arid and arid areas / salinity / MBT’5ME

Cite this article

Download citation ▾
Jingjie ZANG, Yanyan LEI, Huan YANG. Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions. Front. Earth Sci., 2018, 12(4): 862‒876 https://doi.org/10.1007/s11707-018-0722-z

References

[1]
Auguet J C, Barberan A, Casamayor E O (2010). Global ecological patterns in uncultured Archaea. ISME J, 4(2): 182–190
CrossRef Google scholar
[2]
Balsam W L, Ellwood B B, Ji J F, Williams E R, Long X Y, El Hassani A (2011). Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate. Quat Sci Rev, 30(19−20): 2732–2744
CrossRef Google scholar
[3]
Besseling M A, Hopmans E C, Boschman R C, Sinninghe Damsté J S, Villanueva L (2018). Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosci, 15(13): 4047–4064
CrossRef Google scholar
[4]
Blaga C I, Reichart G J, Heiri O, Sinninghe Damsté J S (2009). Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J Paleolimnol, 41(3): 523–540
CrossRef Google scholar
[5]
Brassell S C, Eglinton G, Marlowe I T, Pflaumann U, Sarnthein M (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature, 320(6058): 129–133
CrossRef Google scholar
[6]
Dang X Y, Yang H, Naafs B D A, Pancost R D, Xie S C (2016). Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36
CrossRef Google scholar
[7]
De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe Damsté J S (2013). Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org Geochem, 54(1): 78–82
CrossRef Google scholar
[8]
De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S (2014a). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112
CrossRef Google scholar
[9]
De Jonge C, Stadnitskaia A, Hopmans E C, Cherkashov G, Fedotov A, Sinninghe Damsté J S (2014b). In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim Cosmochim Acta, 125(1): 476–491
CrossRef Google scholar
[10]
Deng L H, Jia G D, Jin C F, Li S J (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17
CrossRef Google scholar
[11]
Elling F J, Könneke M, Nicol G W, Stieglmeier M, Bayer B, Spieck E, de la Torre J R, Becker K W, Thomm M, Prosser J I, Herndl G J, Schleper C, Hinrichs K U (2017). Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol, 19(7): 2681–2700
CrossRef Google scholar
[12]
Heller F, Liu T S (1982). Magnetostratigraphical dating of loess deposits in China. Nature, 300(5891): 431–433
CrossRef Google scholar
[13]
Hopmans E C, Weijers J W H, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1–2): 107–116
CrossRef Google scholar
[14]
Huang X Y, Meyers P A, Xue J T, Gong L F, Wang X X, Xie S C (2015). Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China. Geochim Cosmochim Acta, 154(7): 212–228
CrossRef Google scholar
[15]
Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
CrossRef Google scholar
[16]
Jiang H C, Mao X, Xu H Y, Thompson J, Wang P, Ma X L (2011). Last glacial pollen record from Lanzhou (Northwestern China) and possible forcing mechanisms for the MIS 3 climate change in Middle to East Asia. Quat Sci Rev, 30(5−6): 769–781
CrossRef Google scholar
[17]
Kang S C, Wang F Y, Morgenstern U, Zhang Y L, Grigholm B, Kaspari S, Schwikowski M, Ren J W, Yao T D, Qin D H, Mayewski P A (2015). Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 9(3): 1213–1222
CrossRef Google scholar
[18]
Kemp D B, Robinson S A, Crame J A, Francis J E, Ineson J, Whittle R J, Bowman V, O’Brien C (2014). A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology, 42(7): 583–586
CrossRef Google scholar
[19]
Lei Y Y, Yang H, Dang X Y, Zhao S J, Xie S C (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94
CrossRef Google scholar
[20]
Leng M J, Marshall J D (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev, 23(7–8): 811–831
CrossRef Google scholar
[21]
Lu H Y, Wu N Q, Yang X D, Jiang H, Liu K B, Liu T S (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China. I: Phytolith-based transfer functions. Quat Sci Rev, 25(9–10): 945–959
CrossRef Google scholar
[22]
Menges J, Huguet C, Alcañiz J M, Fietz S, Sachse D, Rosell-Melé A (2014). Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula. Biogeosciences, 11(10): 2571–2581
CrossRef Google scholar
[23]
Miranda M C C, Rossetti D F, Pessenda L C R (2009). Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil): facies, d13C, d15N and C/N. Palaeogeogr Palaeoclimatol Palaeoecol, 282(4): 19–31
CrossRef Google scholar
[24]
Pancost R D, McClymont E L, Bingham E M, Roberts Z, Charman D J, Hornibrook E R, Blundell A, Chambers F M, Lim K L, Evershed R P (2011). Archaeol as a methanogen biomarker in ombrotrophic bogs. Org Geochem, 42(10): 1279–1287
CrossRef Google scholar
[25]
Pancost R D, Taylor K W R, Inglis G N, Kennedy E M, Handley L, Hollis C J, Crouch E M, Pross J, Huber M, Schouten S, Pearson P N, Morgans H E G, Raine J I (2013). Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand. Geochem Geophys Geosyst, 14(12): 5413–5429
CrossRef Google scholar
[26]
Pearson A, Huang Z, Ingalls A E, Romanek C S, Wiegel J, Freeman K H, Smittenberg R H, Zhang C L (2004). Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol, 70(9): 5229–5237
CrossRef Google scholar
[27]
Pearson A, Pi Y D, Zhao W D, Li W J, Li Y L, Inskeep W, Perevalova A, Romanek C, Li S G, Zhang C L (2008). Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol, 74(11): 3523–3532
CrossRef Google scholar
[28]
Pendall E, Markgraf V, White J W C, Dreier M, Kenny R (2001). Multiproxy record of Late Pleistocene Holocene climate and vegetation changes from a peat bog in Patagonia. Quat Res, 55(2): 168–178
CrossRef Google scholar
[29]
Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H B, Gu Z Y, Schouten S, Sinninghe Damsté J S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301(1–2): 256–264
CrossRef Google scholar
[30]
Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96(11): 215–229
CrossRef Google scholar
[31]
Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem, 54(1): 19–61
CrossRef Google scholar
[32]
Sinninghe Damsté J S, Ossebaar J, Schouten S, Verschuren D (2012). Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat Sci Rev, 50(6): 43–54
CrossRef Google scholar
[33]
Sinninghe Damsté J S, Rijpstra W I, Hopmans E C, Foesel B U, Wust P K, Overmann J, Tank M, Bryant D A, Dunfield P F, Houghton K, Stott M B (2014). Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4. Appl Environ Microbiol, 80(17): 5207–5218
CrossRef Google scholar
[34]
Tang C Y, Yang H, Dang X Y, Xie S C (2017). Comparison of paleotemperature reconstructions using microbial tetraether thermometers of the Chinese loess-paleosol sequence for the past 350000 years. Sci China Earth Sci, 60(6): 1159–1170
CrossRef Google scholar
[35]
ter Braak C J F, Smilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA. 500
[36]
Thomas E K, Clemens S C, Sun Y B, Prell W L, Huang Y S, Gao L, Loomis S, Chen G S, Liu Z Y (2016). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth Planet Sci Lett, 455: 196–206
CrossRef Google scholar
[37]
Thornton S F, McManus J (1994). Application of organic carbon and nitrogen stable isotope and C/N Ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci, 38(3): 219–233
CrossRef Google scholar
[38]
Újvári G, Kok J F, Varga G, Kovács J (2016). The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth Sci Rev, 154: 247–278
CrossRef Google scholar
[39]
Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández R, Enríquez-Aragón J, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles, 12(2): 247–254
CrossRef Google scholar
[40]
Wang H Y, Liu W G, Lu H X (2016). Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org Geochem, 98: 118–130
CrossRef Google scholar
[41]
Wang H Y, Liu W G, Zhang C L (2014). Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: implications for palaeorainfall reconstructions on the Chinese Loess Plateau. Biogeosciences, 11(23): 6755–6768
CrossRef Google scholar
[42]
Wang H Y, Liu W G, Zhang C L, Jiang H C, Dong H L, Lu H X, Wang J X (2013). Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai-Tibetan Plateau. Org Geochem, 54: 69–77
CrossRef Google scholar
[43]
Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182): 1090–1093
CrossRef Google scholar
[44]
Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damste J S (2006a). Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8(4): 648–657
CrossRef Google scholar
[45]
Weijers J W H, Schouten S, Spaargaren O C, Sinninghe Damsté J S (2006b). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12): 1680–1693
CrossRef Google scholar
[46]
Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713
CrossRef Google scholar
[47]
Willard D A, Weimer L M, Riegel W L (2001). Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Rev Palaeobot Palynol, 113(4): 213–235
CrossRef Google scholar
[48]
Wu F L, Fang X M, Ma Y Z, Herrmann M, Mosbrugger V, An Z, Miao Y (2007). Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet Sci Lett, 257(1–2): 160–169
CrossRef Google scholar
[49]
Xie S C, Pancost R D, Chen L, Evershed R P, Yang H, Zhang K X, Huang J H, Xu Y D (2012). Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291–294
CrossRef Google scholar
[50]
Yang H, Lü X X, Ding W H, Lei Y Y, Dang X Y, Xie S C (2015a). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia. Org Geochem, 82: 42–53
CrossRef Google scholar
[51]
Yang H, Pancost R D, Dang X Y, Zhou X Y, Evershed R P, Xiao G Q, Tang C Y, Gao L, Guo Z T, Xie S C (2014). Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69
CrossRef Google scholar
[52]
Yang H, Pancost R D, Jia C L, Xie S C (2016). The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols. Geomicrobiol J, 33(2): 98–109
CrossRef Google scholar
[53]
Yang H, Xiao W J, Jia C L, Xie S (2015b). Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils. Front Earth Sci, 9(1): 13–25
CrossRef Google scholar
[54]
Zielinski U, Gersonde R (1997). Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol, 129(3–4): 213–250
CrossRef Google scholar

Acknowledgements

We sincerely thank four anonymous reviewers for their constructive comments, which improved the quality of our original manuscript. The work was sponsored by the National Natural Science Foundation of China (Grant No. 41602189), the project of ‘Cradle Plan’, China University of Geosciences, Wuhan (No. CUGL170403). We also thank Chao GAO and Yue LI for assistance with experiments and Shijin ZHAO for sample analysis.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1499 KB)

Accesses

Citations

Detail

Sections
Recommended

/