Multi-sensor image registration by combining local self-similarity matching and mutual information
Xiaoping LIU , Shuli CHEN , Li ZHUO , Jun LI , Kangning HUANG
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (4) : 779 -790.
Multi-sensor image registration by combining local self-similarity matching and mutual information
Automatic multi-sensor image registration is a challenging task in remote sensing. Conventional image registration algorithms may not be applicable when common underlying visual features are not distinct. In this paper, we propose a novel image registration approach that integrates local self-similarity (LSS) and mutual information (MI) for multi-sensor images with rigid/non-rigid radiometric and geometric distortions. LSS is a well-performing descriptor that captures common, local internal layout features for multi-sensor images, whereas MI focuses on global intensity relationships. First, potential control points are identified by using the Harris algorithm and screened based on the self-similarity of their local surrounding internal layouts. Second, a Bayesian probabilistic model for matching the ensemble of the LSS features is introduced. Third, a particle swarm optimization (PSO) algorithm is adopted to optimize the point and region correspondences for maximum self-similarity and MI and, ultimately, a robust mapping function. The proposed approach is compared with several conventional image registration algorithms that are based on the sum of squared differences (SSD), scale-invariant feature transforms (SIFT), and speeded-up robust features (SURF) through the experimental registration of pairs of Landsat TM, SPOT, and RADARSAT SAR images. The results demonstrate that the proposed approach is efficient and accurate.
automatic registration / multi-sensor images / local self-similarity / mutual information / particle swarm optimization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |