Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015

Yongfeng WANG , Zhaohui XUE , Jun CHEN , Guangzhou CHEN

Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (1) : 92 -110.

PDF (12882KB)
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (1) : 92 -110. DOI: 10.1007/s11707-018-0713-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015

Author information +
History +
PDF (12882KB)

Abstract

Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000–2010). To address these issues, this study attempts to analyze the spatio-temporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux.

Keywords

Yangtze River Delta / MODIS NDVI / ensemble learning / land cover classification / spatio-temporal / phenology

Cite this article

Download citation ▾
Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015. Front. Earth Sci., 2019, 13(1): 92-110 DOI:10.1007/s11707-018-0713-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abercrombie S P, Friedl M A (2016). Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans Geosci Remote Sens, 54(2): 703–713

[2]

Anderson M C, Zolin C A, Sentelhas P C, Hain C R, Semmens K, Tugrul Yilmaz M, Gao F, Otkin J A, Tetrault R (2016). The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens Environ, 174: 82–99

[3]

Breiman L (1996). Bagging predictors. Mach Learn, 24(2):123–140

[4]

Breiman L (2001) Random forests. Mach Learn, 45(1): 5–32

[5]

Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, Peng S, Han G, Zhang H W, He C Y, Wu H, Lu M (2014). Concepts and key techniques for 30 m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 43(6): 551–557

[6]

Chen J, Jonsson P, Tamura M, Gu Z H, Matsushita B, Eklundh L (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 91(3‒4): 332–344

[7]

Chen J, Rao Y H, Shen M G, Wang C, Zhou Y, Ma L, Tang Y H, Yang X (2016). A simple method for detecting phenological change from time series of vegetation index. IEEE Trans Geosci Remote Sens, 54(6): 3436–3449

[8]

Clauss K, Yan H M, Kuenzer C (2016). Mapping paddy rice in China in 2002, 2005, 2010 and 2014 with MODIS time series. Remote Sens, 8(5): 434

[9]

Cortes C, Vapnik V (1995). Support-vector networks. Mach Learn, 20(3): 273–297

[10]

Cover T M, Hart P E (1967). Nearest neighbor pattern classification. IEEE Trans Inf Theory, 13(1): 21–27

[11]

Demir B, Bovolo F, Bruzzone L (2013). Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach. IEEE Trans Geosci Remote Sens, 51(1): 300–312

[12]

Du P J, Xia J S, Zhang W, Tan K, Liu Y, Liu S C (2012). Multiple classifier system for remote sensing image classification: a review. Sensors (Basel), 12(4): 4764–4792

[13]

Eklundh L, Jönsson P (2015). Timesat 3.2 software mannual. Lund and Malmö University, Sweden

[14]

Fensholt R, Proud SR (2012). Evaluation of earth observation based global long term vegetation trends- Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ, 119: 131–147

[15]

Fernandez-Delgado M, Cernadas E, Barro S, Amorim D (2014). Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res, 15: 3133–3181

[16]

Foody G M (2004). Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sensing, 70(5): 627–633

[17]

Ghosh S, Mishra D R, Gitelson A A (2016). Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico−A methodological approach using MODIS. Remote Sens Environ, 173: 39–58 doi:10.1016/j.rse.2015.11.015

[18]

Gómez C, White J C, Wulder M A (2016). Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens, 116: 55–72

[19]

Guan X D, Huang C, Liu G H, Meng X L, Liu Q S (2016). Mapping rice cropping systems in Vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sens, 8(1): 19

[20]

Han G F, Xu J H (2013). Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, China. Environ Manage, 52(1): 234–249

[21]

Heremans S, Suykens J A K, Van Orshoven J (2016). The effect of imposing ‘fractional abundance constraints’ onto the multilayer perceptron for sub-pixel land cover classification. Int J Appl Earth Obs Geoinf, 44: 226–238

[22]

Hmimina G, Dufrêne E, Pontailler J Y, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival J M, Rambal S, Saint André L, Soudani K (2013). Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sens Environ, 132: 145–158

[23]

Ho T K (1998). The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell, 20(8): 832–844

[24]

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1‒2): 195–213

[25]

Jönsson P, Eklundh L (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens, 40(8): 1824–1832

[26]

Karalas K, Tsagkatakis G, Zervakis M, Tsakalides P (2016). Land classification using remotely sensed data: going multilabel. IEEE Trans Geosci Remote Sens, 54(6): 3548–3563

[27]

Li J, Bioucas-Dias J M, Plaza A (2011). Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans Geosci Remote Sens, 49(10): 3947–3960

[28]

Li M M, Mao Z C, Song Y, Liu M X, Huang X (2015). Impacts of the decadal urbanization on thermally induced circulations in eastern China. J Appl Meteorol Climatol, 54(2): 259–282

[29]

Marston C G, Giraudoux P, Armitage R P, Danson F M, Reynolds S C, Wang Q, Qiu J M, Craig P S (2016). Vegetation phenology and habitat discrimination: impacts for E. multilocularis transmission host modelling. Remote Sens Environ, 176: 320–327

[30]

Nascimento J M P, Dias J M B (2005). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens, 43(4): 898–910

[31]

Qader S H, Dash J, Atkinson P M, Rodriguez-Galiano V (2016). Classification of vegetation type in Iraq using satellite-based phenological parameters. IEEE J Sel Top Appl Earth Obs Remote Sens, 9(1): 414–424

[32]

Qiu B W, Feng M, Tang Z H (2016). A simple smoother based on continuous wavelet transform: comparative evaluation based on the fidelity, smoothness and efficiency in phenological estimation. Int J Appl Earth Obs Geoinf, 47: 91–101

[33]

Rodriguez J J, Kuncheva L I, Alonso C J (2006). Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell, 28(10): 1619–1630

[34]

Shao Y, Lunetta R S, Wheeler B, Iiames J S, Campbell J B (2016). An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens Environ, 174: 258–265

[35]

Shi J J, Huang J F (2015). Monitoring spatio-temporal distribution of rice planting area in the Yangtze River Delta region using MODIS images. Remote Sens, 7(7): 8883–8905

[36]

Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ, 114(1): 106–115

[37]

Verger A, Filella I, Baret F, Penuelas J (2016). Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ, 178: 1–14

[38]

Wardlow B D, Egbert S L, Kastens J H (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens Environ, 108(3): 290–310

[39]

Wei H Y, Heilman P, Qi J G, Nearing M A, Gu Z H, Zhang Y G (2012). Assessing phenological change in China from 1982 to 2006 using AVHRR imagery. Front Earth Sci, 6(3): 227–236

[40]

Wohlfart C, Liu G H, Huang C, Kuenzer C (2016). A river basin over the course of time: multi-temporal analyses of land surface dynamics in the Yellow River Basin (China) based on medium resolution remote sensing data. Remote Sens, 8(3): 186

[41]

Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y (2009). Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 31(2): 210–227

[42]

Xia J S, Dalla Mura M, Chanussot J, Du P J, He X Y (2015). Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Trans Geosci Remote Sens, 53(9): 4768–4786

[43]

Xia J S, Du P J, He X Y, Chanussot J (2014). Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett, 11(1): 239–243

[44]

Xue Z H, Du P J, Feng L (2014a). Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series. IEEE J Sel Top Appl Earth Obs Remote Sens, 7(4): 1142–1156

[45]

Xue Z H, Du P J, Su H J (2014b). Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE J Sel Top Appl Earth Obs Remote Sens, 7(6): 2131–2146

[46]

Xue Z H, Li J, Cheng L, Du P J (2015). Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation. IEEE Trans Geosci Remote Sens, 53(1): 70–84

[47]

Zeng L L, Wardlow B D, Wang R, Shan J, Tadesse T, Hayes M J, Li D R (2016). A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens Environ, 181: 237–250

[48]

Zhang B H, Zhang L, Xie D, Yin X L, Liu C J, Liu G (2016). Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation. Remote Sensing, 8: 10

[49]

Zhang C, Ma Y (2012). Ensemble Machine Learning. Springer Verlag New York

[50]

Zhang X Y, Zhang Q Y (2016). Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J Photogramm Remote Sens, 114: 191–205

[51]

Zhao B, Yan Y, Guo H Q, He M M, Gu Y J, Li B (2009). Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area. Ecol Indic, 9(2): 346–356

[52]

Zhao J J, Wang Y Y, Zhang Z X, Zhang H Y, Guo X Y, Yu S, Du W L, Huang F (2016). The variations of land surface phenology in northeast China and its responses to climate change from 1982 to 2013. Remote Sens, 8(5): 400

[53]

Zhou D C, Zhao S Q, Zhang L X, Liu S G (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens Environ, 176: 272–281

[54]

Zhu C M, Lu D S, Victoria D, Dutra L V (2016). Mapping fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat thematic mapper data. Remote Sens, 8: 22

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (12882KB)

1280

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/