Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China
Xianglin WEI, Yuewei DUAN, Yongxue LIU, Song JIN, Chao SUN
Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China
The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328–500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 × 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 × 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.
wind energy resource / wind power density / ASCAT / QuikSCAT / Windsat
[1] |
Ahsbahs T, Badger M, Karagali I, Larsen X G (2017). Validation of Sentinel-1A SAR coastal wind speeds against scanning LiDAR. Remote Sens, 9(6): 552
|
[2] |
Alvarez I, Gomez-Gesteira M, Decastro M, Carvalho D (2014). Comparison of different wind products and buoy wind data with seasonality and interannual climate variability in the southern Bay of Biscay (2000‒2009). Deep Sea Res Part II Top Stud Oceanogr, 106: 38–48
|
[3] |
Anon (2004). Wind Power Outlook 2004. Office of Scientific & Technical Information Technical Reports
|
[4] |
Archer C L, Jacobson M Z (2005). Evaluation of global wind power. J Geophys Res D Atmospheres, 110: D12110
|
[5] |
Barrington-Leigh C, Ouliaris M (2017). The renewable energy landscape in Canada: a spatial analysis. Renew Sustain Energy Rev, 75: 809–819
|
[6] |
Carvalho D, Rocha A, Gomez-Gesteira M, Alvarez I, Silva Santos C (2013). Comparison between CCMP, QuikSCAT and buoy winds along the Iberian Peninsula coast. Remote Sens Environ, 137: 173–183
|
[7] |
Christiansen M B, Koch W, Horstmann J, Hasager C B, Nielsen M (2006). Wind resource assessment from C-band SAR. Remote Sens Environ, 105(1): 68–81
|
[8] |
Coppin P, Ayotte K, Steggel N (2003). Wind resource assessment in Australia: a planners guide. CSIRO Wind Energy Research Unit
|
[9] |
Desholm M, Kahlert J (2005). Avian collision risk at an offshore wind farm. Biol Lett, 1(3): 296–298
|
[10] |
Doubrawa P, Barthelmie R J, Pryor S C, Hasager C B, Badger M, Karagali I (2015). Satellite winds as a tool for offshore wind resource assessment: the Great Lakes Wind Atlas. Remote Sens Environ, 168: 349–359
|
[11] |
Dvorak M J, Archer C L, Jacobson M Z (2010). California offshore wind energy potential. Renew Energy, 35(6): 1244–1254
|
[12] |
Ebuchi N, Graber H C, Caruso M J (2002). Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Journal of Atmospheric & Oceanic Technology, 19 (12): 2049–2062
|
[13] |
Foley A M, Leahy P G, Marvuglia A, Mckeogh E J (2012). Current methods and advances in forecasting of wind power generation. Renew Energy, 37(1): 1–8
|
[14] |
Frank H P, Larsen S E, Højstrup J (2015). Simulated wind power off-shore using different parametrizations for the sea surface roughness. Wind Energy (Chichester Engl), 3(2): 67–79
|
[15] |
Hasager C B, Barthelmie R J, Christiansen M B, Nielsen M, Pryor S C (2006). Quantifying offshore wind resources from satellite wind maps: study area the North Sea. Wind Energy (Chichester Engl), 9(1‒2): 63–74
|
[16] |
Hasager C B, Mouche A, Badger M, Bingol F, Karagali I, Driesenaar T, Stoffelen A, Pena A, Longepe N (2015). Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens Environ, 156: 247–263
|
[17] |
Hasager C B, Nielsen M, Astrup P, Barthelmie R, Dellwik E, Jensen N O, Jorgensen B H, Pryor S C, Rathmann O, Furevik B R (2005). Offshore resource estimation from satellite SAR wind field maps. Wind Energy (Chichester Engl), 8(4): 403–419
|
[18] |
Heng X, Ruizhao Z, Zhenbin Y, Chunhong Y (2001). Assessment of wind energy reserves in China. Acta Energies Solaris Sinica, 22: 167–170
|
[19] |
Jiang D, Zhuang D, Huang Y, Wang J, Fu J (2013). Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data. Renew Sustain Energy Rev, 24: 142–148
|
[20] |
Jimenez B, Durante F, Lange B, Kreutzer T, Tambke J (2010). Offshore wind resource assessment with WAsP and MM5: comparative study for the German Bight. Wind Energy (Chichester Engl), 10(2): 121–134
|
[21] |
Kariniotakis G, Marti I, Casas D, Pinson P, Nielsen T S, Madsen H, Giebel G, Usaola J, Sanchez I, Palomares A M (2005). What performance can be expected by short-term wind power prediction models depending on site characteristics? In: Proceedings CD-ROM Brussels: European Wind Energy Association
|
[22] |
Lima D K S, Leao R P S, Dos Santos A C S, De Melo F D C, Couto V M, De Noronha A W T, Oliveira D S Jr (2015). Estimating the offshore wind resources of the State of Ceara in Brazil. Renew Energy, 83: 203–221
|
[23] |
Madders M, Whitfield D P (2006). Upland raptors and the assessment of wind farm impacts. Ibis, 148: 43–56
|
[24] |
Manwell J F, Rogers A L, Mcgowan J G, Bailey B H (2002). An offshore wind resource assessment study for New England. Renew Energy, 27(2): 175–187
|
[25] |
Nagababu G, Kachhwaha S S, Saysani V, Banerjee R (2017). Evaluation of offshore wind power potential in the western coast of India: a preliminary study. Curr Sci, 112(1): 62–67
|
[26] |
Obama B (2017). The irreversible momentum of clean energy. Science, 355(6321): 126–129
|
[27] |
Ohunakin O S, Akinnawonu O O (2012). Assessment of wind energy potential and the economics of wind power generation in Jos, Plateau State, Nigeria. Energy Sustain Dev, 16(1): 78–83
|
[28] |
Pickett M H, Tang W, Rosenfeld L K, Wash C H (2003a). QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. West Coast. J Atmos Ocean Technol, 20(12): 1869–1879
|
[29] |
Pickett M H, Tang W, Rosenfeld L K, Wash C H (2003b). QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J Atmos Ocean Technol, 20(12): 1869–1879
|
[30] |
Pimenta F, Kempton W, Garvine R (2008). Combining meteorological stations and satellite data to evaluate the offshore wind power resource of southeastern Brazil. Renew Energy, 33(11): 2375–2387
|
[31] |
Purohit I, Purohit P (2009). Wind energy in India: status and future prospects. Journal of Renewable and Sustainable Energy, 1(4): 042701
|
[32] |
Quilfen Y, Prigent C, Chapron B, Mouche A, Houti N (2007). The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions. J Geophys Res Oceans, 112(C9): 1–18
|
[33] |
Ramachandra T, Shruthi B (2005). Wind energy potential mapping in Karnataka, India, using GIS. Energy Convers Manage, 46(9): 1561–1578
|
[34] |
Risien C M, Chelton D B (2008). A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr, 38(11): 2379–2413
|
[35] |
Shen G, Xu B, Jin Y X, Chen S, Zhang W B, Guo J, Liu H, Zhang Y J, Yang X C (2017). Monitoring wind farms occupying grasslands based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city, Gansu Province, China. Resour Conserv Recycling, 121: 128–136
|
[36] |
Shimada S, Ohsawa T (2011). Accuracy and characteristics of offshore wind speeds simulated by WRF. Scientific Online Letters on the Atmosphere Sola, 7(1): 21–24
|
[37] |
Sliz-Szkliniarz B, Vogt J (2011). GIS-based approach for the evaluation of wind energy potential: a case study for the Kujawsko-Pomorskie Voivodeship. Renew Sustain Energy Rev, 15(3): 1696–1707
|
[38] |
Tang W, Liu W T, Stiles B W (2004). Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Trans Geosci Remote Sens, 42(8): 1762–1769
|
[39] |
Thornton H E, Scaife A A, Hoskins B J, Brayshaw D J (2017). The relationship between wind power, electricity demand and winter weather patterns in Great Britain. Environ Res Lett, 12(6): 064017
|
[40] |
Troen I, Petersen E L (1989). European wind atlas.Roskilde: Riso National Laboratory
|
[41] |
Truewind Solutions L (2001). Wind energy resource atlas of Southeast Asia. The World Bank
|
[42] |
Xie X, Wei J, Huang L (2014). Comparisons of ASCAT wind vectors and buoy wind data in China’s coastal waters. Journal of Applied Meteorological Science, 25(4): 445–453 (in Chinese)
|
[43] |
Yu W, Benoit R, Girard C, Glazer A, Lemarquis D, Salmon J R, Pinard J P (2006). Wind energy simulation toolkit (WEST): a wind mapping system for use by the wind energy industry. Wind Eng, 4034(1): 15–33
|
[44] |
Zhao S S, Liu Y X, Li M C, Sun C, Zhou M X, Zhang H X (2015). Analysis of Jiangsu tidal flats reclamation from 1974 to 2012 using remote sensing. China Ocean Eng, 29(1): 143–154
|
[45] |
Zhou Y, Wu W X, Liu G X (2011). Assessment of onshore wind energy resource and wind-generated electricity potential in Jiangsu, China. Energy Procedia, 5(1): 418–422
|
[46] |
Zhu R, Xue H (1983). Division of wind energy in China. Acta Energies Solaris Sinica, 4(2): 123–132
|
/
〈 | 〉 |