On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ

Yiannis KAMARIANAKIS , Xiaoxiao LI , B. L. TURNER II , Anthony J. BRAZEL

Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (3) : 445 -463.

PDF (2781KB)
Front. Earth Sci. ›› 2019, Vol. 13 ›› Issue (3) : 445 -463. DOI: 10.1007/s11707-017-0678-4
RESEARCH ARTICLE
RESEARCH ARTICLE

On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ

Author information +
History +
PDF (2781KB)

Abstract

The impacts of land-cover composition on urban temperatures, including temperature extremes, are well documented. Much less attention has been devoted to the consequences of land-cover configuration, most of which addresses land surface temperatures. This study explores the role of both composition and configuration—or land system architecture—of residential neighborhoods in the Phoenix metropolitan area, on near-surface air temperature. It addresses two-dimensional, spatial attributes of buildings, impervious surfaces, bare soil/rock, vegetation and the “urbanscape” at large, from 50 m to 550 m at 100 m increments, for a representative 30-day high sun period. Linear mixed-effects models evaluate the significance of land system architecture metrics at different spatial aggregation levels. The results indicate that, controlling for land-cover composition and geographical variables, land-cover configuration, specifically the fractal dimension of buildings, is significantly associated with near-surface temperatures. In addition, statistically significant predictors related to composition and configuration appear to depend on the adopted level of spatial aggregation.

Keywords

land system architecture / urban heat island effect / linear mixed-effects models / near-surface air temperature / land-cover configuration

Cite this article

Download citation ▾
Yiannis KAMARIANAKIS, Xiaoxiao LI, B. L. TURNER II, Anthony J. BRAZEL. On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ. Front. Earth Sci., 2019, 13(3): 445-463 DOI:10.1007/s11707-017-0678-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akbari H, Matthews H D (2012). Global cooling updates: reflective roofs and pavements. Energy Build, 55: 2–6 doi:10.1016/j.enbuild.2012.02.055

[2]

Akbari H, Pomerantz M, Taha H (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy, 70(3): 295–310

[3]

Baker L A, Brazel A J, Selover N, Martin C, McIntyre N, Steiner F R, Nelson A, Musacchio L (2002). Urbanization and warming of Phoenix (Arizona, USA): impacts, feedbacks and mitigation. Urban Ecosyst, 6(3): 183–203

[4]

Bowler D E, Buyung-Ali L, Knight T M, Pullin A S (2010). Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan, 97(3): 147–155

[5]

Brazel A, Gober P, Lee S J, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E (2007). Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim Res, 33(2): 171–182

[6]

Brazel A, Selover N, Vose R, Heisler G (2000). The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res, 15(2): 123–135

[7]

Cao X, Onishi A, Chen J, Imura H (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc Urban Plan, 96(4): 224–231

[8]

Cermak V, Bodri L, Kresl M, Dedecek P, Safanda J (2017). Eleven years of ground-air temperature tracking over different land cover types. Int J Climatol, 37(2): 1084–1099

[9]

Chow W T L, Brazel A (2012). Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build Environ, 47: 170–181

[10]

Chow W T L, Brennan D, Brazel A (2012). Urban heat island research in Phoenix, Arizona: theoretical contributions and policy applications. Bull Am Meteorol Soc, 93(4): 517–530

[11]

Chow W T L, Pope R L, Martin C A, Brazel A (2011). Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theor Appl Climatol, 103(1–2): 197–211

[12]

Chow W T L, Svoma B M (2011). Analyses of nocturnal temperature cooling-rate response to historical local-scale urban land-use/land cover change. J Appl Meteorol Climatol, 50(9): 1872–1883

[13]

Chow W T L, Volo T J, Vivoni E R, Jenerette D G, Ruddell B L (2014). Seasonal dynamics of a suburban energy balance in Phoenix, Arizona. Int J Climatol, 34(15): 3863–3880

[14]

Connors J P, Galletti C S, Chow W T (2013). Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol, 28(2): 271–283

[15]

Declet-Barreto J, Brazel A, Martin C A, Chow W T, Harlan S L (2013). Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosyst, 16(3): 617–635

[16]

Faeth S H, Bang C, Saari S (2011). Urban biodiversity: patterns and mechanisms. Ann N Y Acad Sci, 1223(1): 69–81

[17]

Fast J D, Torcolini J C, Redman R (2005). Pseudovertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona. J Appl Meteorol, 44(1): 3–13

[18]

Forman R T T (1990). Ecologically sustainable landscapes: the role of spatial configuration. In Forman R T T, Zonnelfeld I S, eds. Changing Landscapes: An Ecological Perspective. New York: Springer, 261–278

[19]

Georgescu M, Morefield P E, Bierwagen B G, Weaver C P (2014). Urban adaptation can roll back warming of emerging megapolitan regions. Proc Natl Acad Sci USA, 111(8): 2909–2914

[20]

Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2011). An alternative explanation of the semiarid urban area “oasis effect”. J Geophys Res, 116(D24): D24113

[21]

Gill S E, Handley J F, Ennos A R, Pauleit S (2007). Adapting cities for climate change: the role of the green infrastructure. Built Environ, 33(1): 115–133

[22]

Gober P, Kirkwood C W, Balling R C, Ellis A W, Deitrick S (2010). Water planning under climatic uncertainty in Phoenix: why we need a new paradigm. Ann Assoc Am Geogr, 100(2): 356–372

[23]

Grimmond C S B, Blackett M, Best M J, Baik J J, Belcher S E, Beringer J, Bohnenstengel S I, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea M L, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff E S, Lee S H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu Y H, Salamanca F, Steeneveld G J, Tombrou M, Voogt J A, Young D T, Zhang N (2011). Initial results from Phase 2 of the international urban energy balance model comparison. Int J Climatol, 31(2): 244–272

[24]

Grimmond S (2007). Urbanization and global environmental change: local effects of urban warming. Geogr J, 173(1): 83–88

[25]

Grossman-Clarke S, Zehnder J A, Loridan T L, Grimmond S B (2010). Contribution of land uses changes to near-surface air temperature during recent summer extreme heat events in the Phoenix metropolitan area. American Meteorological Society, 49(8): 1649–1664

[26]

Guhathakurta S, Gober P (2010). Residential land use, the urban heat island, and water use in Phoenix: a path analysis. J Plann Educ Res, 30(1): 40–51

[27]

Harlan S, Brazel A, Prashad L, Stefanov W L, Larsen L (2006). Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med, 63(11): 2847–2863

[28]

Hondula D M, Vanos J K, Gosling S N (2013). The SSC: a decade of climate–health research and future directions. Int J Biometeorol, 58(2): 1–12

[29]

Huang G, Cadenasso M L (2016). People, landscape, and urban heat island: dynamics among neighborhood social conditions, land cover and surface temperatures. Landsc Ecol, 31(10): 2507–2515

[30]

Jacobson M Z, Ten Hoeve J E (2012). Effects of urban surface and white roofs on global and regional climate. J Clim, 25(3): 1028–1044

[31]

James G, Witten D, Hastie T, Tibshirani R (2013). An Introduction to Statistical Learning. New York: Springer

[32]

Jenerette G D, Harlan S, Buyantuev A, Stefanov W L, Declet-Barreto J, Ruddell B L, Myint S, Kaplan S, Li X (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc Ecol, 31(4): 745–760

[33]

Jenerette G D, Harlan S, Stefanov W L, Martin C A (2011). Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol Appl, 21(7): 2637–2651

[34]

Krüger E L, Minella F O, Rasia F (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build Environ, 46(3): 621–634

[35]

Kusaka H, Hara M, Takane Y (2012). Urban climate projection by the WRF Model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070s August for Tokyo, Osaka, and Nagoya, metropolises. J Meteorol Soc Jpn, 90B(0): 47–63

[36]

Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ, 115(12): 3249–3263

[37]

Li X, Kamarianakis Y, Ouyang Y, Turner B L II, Brazel A (2017). On the association between land system architecture and land surface temperatures: evidence from a desert metropolis—Phoenix, Arizona, U.S.A. Landsc Urban Plan, 163: 107–120

[38]

Li X, Li W, Middel A, Harlan S L, Brazel A, Turner B L II (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: combined effects of land composition and configuration and cadastral-demographic-economic factors. Remote Sens Environ, 174: 233–243

[39]

Li X, Myint S, Zhang Y, Galletti C, Zhang X, Turner B L II (2014). Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography. Int J Appl Earth Obs Geoinf, 33: 321–330

[40]

Li X, Zhou W, Ouyang Z, Xu W, Zheng H (2012). Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area China. Landsc Ecol, 27(6): 887–898

[41]

Lindén J (2011). Nocturnal cool island in the Sahelian city of Ouagadougou, Burkina Faso. Int J Climatol, 31(4): 605–620

[42]

Loridan T, Lindberg F, Jorba O, Kotthaus S, Grossman-Clarke S, Grimmond C S B (2013). High resolution simulation of the variability of surface energy balance fluxes across Central London with urban zones for energy partitioning. Boundary-Layer Meteorol, 147(3): 493–523

[43]

Maimaitiyiming M, Ghulam A, Tiyip T, Pla F, Latorre-Carmona P, Halik Ü, Sawut M, Caetano M (2014). Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation. ISPRS J Photogramm Remote Sens, 89: 59–66

[44]

McGarigal K, Cushman S A, Ene E (2012). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA

[45]

Middel A, Brazel A, Kaplan S, Myint S (2012). Daytime cooling efficiency and diurnal energy balance in Phoenix, Arizona, USA. Clim Res, 54(1): 21–34

[46]

Middel A, Häb K, Brazel A J, Martin C A, Guhathakurta S (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc Urban Plan, 122: 16–28

[47]

Myint S W, Zheng B, Talen E, Fan C, Kaplan S, Middel A, Smith M, Huang H P, Brazel A (2015). Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosyst Health Sustain, 1(4): 1–15

[48]

Myint S, Brazel A, Okin G, Buyantuyev A (2010). Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GIsci Remote Sens, 47(3): 301–320

[49]

Myint S, Wentz E A, Brazel A, Quattrochi D A (2013). The impact of distinct anthropogenic and vegetation features on urban warming. Landsc Ecol, 28(5): 959–978

[50]

Nichol J E, Fung W Y, Lam K, Wong M S (2009). Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmos Res, 94(2): 276–284

[51]

Oke T R (2006). Initial guidance to obtain representative meteorological observations at urban sites. In: IOM Report No. 81. WMO/TD No. 1250. Geneva: World Meteorological Organization

[52]

Pinheiro J C, Bates D M (2009). Mixed Effects Models in S and S-plus. New York: Springer

[53]

Song J, Wang Z H, Myint S W, Wang C (2017). The hysteresis effect on surface-air temperature relationship and its implications to urban planning: an examination in Phoenix, Arizona, USA. Landsc Urban Plan, 167: 198–211

[54]

Stewart I D, Oke T R (2012). Local climate zones for urban temperature studies. Bull Am Meteorol Soc, 93(12): 1879–1900

[55]

Stewart I D, Oke T R, Krayenhoff E S (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int J Climatol, 34(4): 1062–1080

[56]

Stewart J Q, Whiteman C D, Steenburgh W J, Bian X (2002). A climatological study of thermally driven wind systems of the U. S. intermountain west. Bull Am Meteorol Soc, 83(5): 699–708

[57]

Stoll M J, Brazel A J (1992). Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Phys Geogr, 13(2): 160–179

[58]

Stone B Jr, Rodgers M O (2001). Urban form and thermal efficiency: how the design of cities influences the urban heat island effect. J Am Plann Assoc, 67(2): 186–198

[59]

Turner B L II (2016). Land system architecture for urban sustainability: new directions for land system science illustrated by application to the urban heat island problem. J Land Use Sci, 11(6): 689–697

[60]

Turner B L II, Janetos A C, Verburg P H, Murray A T (2013). Land system architecture: using land systems to adapt and mitigate global environmental change. Glob Environ Change, 23(2): 395–397

[61]

Voogt J A, Oke T R (2003). Thermal remote sensing of urban climates. Remote Sens Environ, 86(3): 370–384

[62]

Wang Y, Akbari H (2016). Analysis of urban heat island phenomenon and mitigation solutions evaluations for Montreal. Sustainable Cities and Society, 26: 438–446

[63]

Wentz E A, Stefanov W L, Gries C, Hope D (2006). Land use and land cover mapping from diverse data sources for an arid urban environments. Comput Environ Urban Syst, 30(3): 320–346

[64]

Wong N H, Yu C (2005). Study of green areas and urban heat island in a tropical city. Habitat Int, 29(3): 547–558

[65]

Xiao R, Ouyang Z, Zheng H, Li W, Schienke E W, Wang X (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci (China), 19(2): 250–256

[66]

Yang F, Lau S Y, Qian F (2011). Urban design to lower summertime outdoor temperatures: an empirical study on high-rise housing in Shanghai. Build Environ, 46(3): 769–785

[67]

Zhang Y, Murray A, Turner B L II (2017). Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc Urban Plan, 165: 162–171

[68]

Zhou W, Huang G, Cadenasso M L (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan, 102(1): 54–63

[69]

Zuur A, Ieno E N, Walker N, Savaliev A A, Smith G M (2009). Mixed Effects Models and Extensions in Ecology with R. New York: Springer

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (2781KB)

1900

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/