Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts
Teng NIE, Lei NIE, Zhen ZHOU, Zhanshan WANG, Yifeng XUE, Jiajia GAO, Xiaoqing WU, Shoubin FAN, Linglong CHENG
Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts
In recent years, Beijing has experienced severe air pollution which has caused widespread public concern. Compared to the same period in 2014, the first three quarters of 2015 exhibited significantly improved air quality. However, the air quality sharply declined in the fourth quarter of 2015, especially in November and December. During that time, Beijing issued the first red alert for severe air pollution in history. In total, 2 red alerts, 3 orange alerts, 3 yellow alerts, and 3 blue alerts were issued based on the adoption of relatively temporary emergency control measures to mitigate air pollution. This study explored the reasons for these variations in air quality and assessed the effectiveness of emergency alerts in addressing severe air pollution. A synthetic analysis of emission variations and meteorological conditions was performed to better understand these extreme air pollution episodes in the fourth quarter of 2015. The results showed that compared to those in the same period in 2014, the daily average emissions of air pollutants decreased in the fourth quarter of 2015. However, the emission levels of primary pollutants were still relatively high, which was the main intrinsic cause of haze episodes, and unfavorable meteorological conditions represented important external factors. Emergency control measures for heavy air pollution were implemented during this red alert period, decreasing the emissions of primary air pollutants by approximately 36% and the PM2.5 concentration by 11%‒21%.
heavy air pollution / red alert / emissions variation / meteorological conditions / emergency control measures
[1] |
Amil N, Latif M T, Khan M F, Mohamad M (2015). Meteorological-gaseous influences on seasonal PM2.5 variability in the Klang valley urban-industrial environment. Atmos Chem Phys Discuss, 15(18): 26423–26479
CrossRef
Google scholar
|
[2] |
Andersson A, Deng J, Du K, Zheng M, Yan C, Sköld M, Gustafsson Ö (2015). Regionally-varying combustion sources of the January 2013 severe haze events over eastern China. Environ Sci Technol, 49(4): 2038–2043
CrossRef
Google scholar
|
[3] |
Bei N, Xiao B, Meng N, Feng T (2016). Critical role of meteorological conditions in a persistent haze episode in the Guanzhong basin, China. Sci Total Environ, 550: 273–284
CrossRef
Google scholar
|
[4] |
BJEPB (Beijing Municipal Environmental Protection Bureau) (2015a). Beijing Environmental Statement 2014
CrossRef
Google scholar
|
[5] |
BJEPB (Beijing Municipal Environmental Protection Bureau) (2015b). Emergency plan for heavy air pollution in Beijing
CrossRef
Google scholar
|
[6] |
BJEPB (Beijing Municipal Environmental Protection Bureau) (2016). Beijing Environmental Statement 2015
CrossRef
Google scholar
|
[7] |
BMRIEP (Beijing Municipal Research Institute of Environmental Protection) (2016). Technical Report for Emission Inventory of Primary Air Pollutants in Beijing, 2015
|
[8] |
Byun D, Schere K L (2006). Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev, 59(2): 51–77
CrossRef
Google scholar
|
[9] |
Chen W, Yan L, Zhao H (2015). Seasonal variations of atmospheric pollution and air quality in Beijing. Atmosphere, 6(12): 1753–1770
CrossRef
Google scholar
|
[10] |
Cheng N, Li Y, Zhang D, Chen T, Xu W, Sun F, Dong X (2015). Analysis about the characteristics and formation mechanisms of a serious pollution event in October 2014 in Beijing. Research of Environmental Sciences, 28: 163–170
|
[11] |
Djalalova I, Delle Monache L, Wilczak J (2015). PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos Environ, 108: 76–87
CrossRef
Google scholar
|
[12] |
Emery C, Tai E, Yarwood G (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for The Texas Natural Resource Conservation Commission by ENVIRON International Corporation. 2001
|
[13] |
Foley K M, Hogrefe C, Pouliot G, Possiel N, Roselle S J, Simon H, Timin B (2015). Dynamic evaluation of CMAQ Part I: separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US. Atmospheric Environment 103: 247–255
CrossRef
Google scholar
|
[14] |
Gan C M, Binkowski F, Pleim J, Xing J, Wong D, Mathur R, Gilliam R (2015). Assessment of the aerosol optics component of the coupled WRF–CMAQ model using CARES field campaign data and a single column model. Atmos Environ, 115: 670–682
CrossRef
Google scholar
|
[15] |
Gao J, Tian H, Cheng K, Lu L, Zheng M, Wang S, Hao J, Wang K, Hua S, Zhu C, Wang Y (2015). The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos Environ, 107: 1–8
CrossRef
Google scholar
|
[16] |
Guo S, Hu M, Guo Q, Zhang X, Schauer J J, Zhang R (2013). Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos Chem Phys, 13(16): 8303–8314
CrossRef
Google scholar
|
[17] |
Hogrefe C, Pouliot G, Wong D, Torian A, Roselle S, Pleim J, Mathur R (2015). Annual application and evaluation of the online coupled WRF–CMAQ system over North America under AQMEII phase 2. Atmos Environ, 115: 683–694
CrossRef
Google scholar
|
[18] |
Hsu C Y, Chiang H C, Chen M J, Chuang C Y, Tsen C M, Fang G C, Tsai Y I, Chen N T, Lin T Y, Lin S L, Chen Y C (2017). Ambient PM2.5 in the residential area near industrial complexes: spatiotemporal variation, source apportionment, and health impact. Sci Total Environ, 590–591: 204–214
CrossRef
Google scholar
|
[19] |
Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I E, Prévôt A S H (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521): 218–222
CrossRef
Google scholar
|
[20] |
Ji D, Zhang J, He J, Wang X, Pang B, Liu Z, Wang L, Wang Y (2016). Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos Environ, 125: 293–306
CrossRef
Google scholar
|
[21] |
Li J, Du H Y, Wang Z F, Sun Y L, Yang W Y, Li J J, Tang X, Fu P F (2017). Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environ Pollut, 223: 605–615
CrossRef
Google scholar
|
[22] |
Li J, Xie S D, Zeng L M, Li L Y, Li Y Q, Wu R R (2015). Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic cooperation China 2014. Atmos Chem Phys, 15(14): 7945–7959
CrossRef
Google scholar
|
[23] |
Li Z, Gu X, Wang L, Li D, Xie Y, Li K, Dubovik O, Schuster G, Goloub P, Zhang Y, Li L, Ma Y, Xu H (2013). Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos Chem Phys, 13(20): 10171–10183
CrossRef
Google scholar
|
[24] |
Liu X G, Li J, Qu Y, Han T, Hou L, Gu J, Chen C, Yang Y, Liu X, Yang T, Zhang Y, Tian H Z, Hu M (2013). Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China. Atmos Chem Phys, 13(9): 4501–4514
CrossRef
Google scholar
|
[25] |
Lv B, Cai J, Xu B, Bai Y Q (2017). Understanding the rising phase of the PM2.5 concentration evolution in Large China cities. Sci Rep, 7: 46456
CrossRef
Google scholar
|
[26] |
Park S U, Lee I H, Joo S J (2016). Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010. Science of the Total Environment, 542(A): 210–222
CrossRef
Google scholar
|
[27] |
Porter W C, Heald C L, Cooley D, Russell B (2015). Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmos Chem Phys, 15(18): 10349–10366
CrossRef
Google scholar
|
[28] |
Schleicher N J, Schäfer J, Blanc G, Chen Y, Chai F, Cen K, Norra S (2015). Atmospheric particulate mercury in the megacity Beijing: spatio-temporal variations and source apportionment. Atmos Environ, 109: 251–261
CrossRef
Google scholar
|
[29] |
Simon H, Baker K R, Phillips S (2012). Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos Environ, 61: 124–139
CrossRef
Google scholar
|
[30] |
Sun Y, Du W, Wang Q, Zhang Q, Chen C, Chen Y, Chen Z, Fu P, Wang Z, Gao Z, Worsnop D R (2015). Real-time characterization of aerosol particle composition above the urban canopy in Beijing: insights into the interactions between the atmospheric boundary layer and aerosol chemistry. Environ Sci Technol, 49(19): 11340–11347
CrossRef
Google scholar
|
[31] |
Sun Y, Jiang Q, Wang Z, Fu P, Li J, Yang T, Yin Y (2014). Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res D Atmospheres, 119(7): 4380–4398
CrossRef
Google scholar
|
[32] |
Sun Y, Zhuang G, Tang A A, Wang Y, An Z (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol, 40(10): 3148–3155
CrossRef
Google scholar
|
[33] |
Syrakov D, Prodanova M, Georgieva E, Etropolska I, Slavov K (2016). Simulation of European air quality by WRF–CMAQ models using AQMEII-2 infrastructure. J Comput Appl Math, 293: 232–245
CrossRef
Google scholar
|
[34] |
Tian H Z, Zhu C Y, Gao J J, Cheng K, Hao J M, Wang K, Hua S B, Wang Y, Zhou J R (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys, 15(17): 10127–10147
CrossRef
Google scholar
|
[35] |
Wang L, Wei Z, Wei W, Fu J S, Meng C, Ma S (2015a). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos Environ, 122: 723–736
CrossRef
Google scholar
|
[36] |
Wang N, Guo H, Jiang F, Ling Z H, Wang T (2015b). Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model. Sci Total Environ, 505: 939–951
CrossRef
Google scholar
|
[37] |
Wang X, Zhang Y, Hu Y, Zhou W, Lu K, Zhong L, Zeng L, Shao M, Hu M, Russell A G (2010). Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the community multiscale air quality modeling system. Atmos Chem Phys, 10(9): 4423–4437
CrossRef
Google scholar
|
[38] |
Xue Y, Tian H, Yan J, Zhou Z, Wang J, Nie L, Pan T, Zhou J, Hua S, Wang Y, Wu X (2016a). Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Environ Pollut, 213: 717–726
CrossRef
Google scholar
|
[39] |
Xue Y F, Zhou Z, Nie T, Pan T, Qi J, Nie L, Wang Z S, Li Y T, Li X F, Tian H Z (2016b). Exploring the severe haze in Beijing during December, 2015: pollution process and emissions variation. Environmental Science, 37(5): 1593–1601
|
[40] |
Yang Y, Zhou R, Wu J, Yu Y, Ma Z, Zhang L, Di Y A (2015). Seasonal variations and size distributions of water-soluble ions in atmospheric aerosols in Beijing, 2012. J Environ Sci (China), 34: 197–205
CrossRef
Google scholar
|
[41] |
Zhang W, Capps S L, Hu Y, Nenes A, Napelenok S L, Russell A G (2012). Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models. Geosci Model Dev, 5(2): 355–368
CrossRef
Google scholar
|
[42] |
Zhang X Y, Wang J Z, Wang Y Q, Liu H L, Sun J Y, Zhang Y M (2015). Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys, 15(22): 12935–12952
CrossRef
Google scholar
|
[43] |
Zhao Y, Qiu L P, Xu R Y, Xie F J, Zhang Q, Yu Y Y, Nielsen C P, Qin H X, Wang H K, Wu X C, Li W Q, Zhang J (2015). Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China. Atmos Chem Phys, 15(21): 12623–12644
CrossRef
Google scholar
|
[44] |
Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B (2015). Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 15(6): 2969–2983
CrossRef
Google scholar
|
[45] |
Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P, Liu J, Yu S, Tan F, Barber R M, Coates M M, Dicker D, Fraser M, González-Medina D, Hamavid H, Hao Y, Hu G, Jiang G, Kan H, Lopez A D, Phillips M R, She J, Vos T, Wan X, Xu G, Yan L L, Yu C, Zhao Y, Zheng Y, Zou X, Naghavi M, Wang Y, Murray C J, Yang G, Liang X (2016). Cause-specific mortality for 240 causes in China during 1990‒2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet, 387(10015): 251–272
CrossRef
Google scholar
|
/
〈 | 〉 |