Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data
H. CHEN, X. ZOU, Z. QIN
Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data
Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polar-orbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Inter-sensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A. We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998−2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECT among different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.
AMSU-A / diurnal adjustment / decadal temperature trend
[1] |
Aldrich J (1998). Doing least squares: perspectives from Gauss and Yule. Int Stat Rev, 66(1): 61–81
CrossRef
Google scholar
|
[2] |
Andersson E, Hollingsworth A, Kelly G, Lonnberg P, Pailleux J, Zhang Z (1991). Global observing system experiments on operational statistical retrievals of satellite sounding data. Mon Weather Rev, 119(8): 1851–1864
CrossRef
Google scholar
|
[3] |
Cao C, Weinreb M, Xu H (2004). Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J Atmos Ocean Technol, 21(4): 537–542
CrossRef
Google scholar
|
[4] |
Clough S A, Shephard M W, Mlawer E J, Delamere J S, Iacono M, Cady-Pereira K E, Boukabara S, Brown P D (2005). Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf, 91(2): 233–244
CrossRef
Google scholar
|
[5] |
Derber J C, Wu W S (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Weather Rev, 126(8): 2287–2299
CrossRef
Google scholar
|
[6] |
Eyre J R, Kelly G A, McNally A P, Andersson E, Persson A (1993). Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteorol Soc, 119(514): 1427–1463
CrossRef
Google scholar
|
[7] |
Ferraro R R, Weng F, Grody N C, Zhao L (2000). Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys Res Lett, 27(17): 2669–2672
CrossRef
Google scholar
|
[8] |
Han Y, Weng F, Liu Q, van Delst P (2007). A fast radiative transfer model for SSMIS upper atmosphere sounding channels. Journal of Geophysical Research: Atmospheres, 112(D11): D11121
CrossRef
Google scholar
|
[9] |
Kroodsma R A, McKague D S, Ruf C S (2012). Inter-calibration of microwave radiometers using the vicarious cold calibration double difference method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5: 1006–1013
|
[10] |
Mears C A, Schabel M C, Wentz F J, Santer B D, Govindasamy B (2002). Correcting the MSU middle tropospheric temperature for diurnal drifts. Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International, 3: 1839–1841
|
[11] |
Mo T (1996). Prelaunch calibration of the advanced microwave sounding unit-A for NOAA-K. IEEE Trans Microw Theory Tech, 44(8): 1460–1469
CrossRef
Google scholar
|
[12] |
Mo T (2007). Diurnal variation of the AMSU-A brightness temperatures over the Amazon rainforest. IEEE Transactions on Geoscience and Remote Sensing, 45: 958–969
|
[13] |
Privette J L, Fowler C, Wick G A, Baldwin D, Emery W J (1995). Effects of orbital drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ, 53(3): 164–171
CrossRef
Google scholar
|
[14] |
Tian X, Zou X (2016). ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J Geophys Res Atmos, 121(21): 12,630–12,646
CrossRef
Google scholar
|
[15] |
Wang L, Goldberg M, Wu X, Cao C, Iacovazzi R A, Yu F, Li Y (2011). Consistency assessment of atmospheric infrared sounder and infrared atmospheric sounding interferometer radiances: double differences versus simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres, 116( D11): 755–764
|
[16] |
Weng F (2007). Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci, 64(11): 3799–3807
CrossRef
Google scholar
|
[17] |
Weng F, Grody N C (2000). Retrieval of ice cloud parameters using a microwave imaging radiometer. J Atmos Sci, 57(8): 1069–1081
CrossRef
Google scholar
|
[18] |
Weng F, Zhao L, Ferraro R R, Poe G, Li X, Grody N C (2003). Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci, 38(4): 8068
CrossRef
Google scholar
|
[19] |
Zou C, Goldberg M D, Cheng Z, Grody N C, Sullivan J T, Cao C, Tarpley D (2006). Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres, 111( D19): 5455–5464
|
[20] |
Zou C, Wang W (2011). Intersatellite calibration of AMSU-A observations for weather and climate applications. Journal of Geophysical Research: Atmospheres, 116( D23): 23113
|
[21] |
Zou X, Wang X, Weng F, Li G (2011). Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J Atmos Ocean Technol, 28(10): 1206–1227
CrossRef
Google scholar
|
[22] |
Zou X, Weng F, Yang H (2014). Connecting the time series of microwave sounding observations from AMSU to ATMS for long-term monitoring of climate. Journal of Atmospheric & Oceanic Technology, 31(10): 2206–2222
|
/
〈 | 〉 |