Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

H. CHEN , X. ZOU , Z. QIN

Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 1 -16.

PDF (7028KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 1 -16. DOI: 10.1007/s11707-017-0671-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

Author information +
History +
PDF (7028KB)

Abstract

Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polar-orbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Inter-sensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A. We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998−2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECT among different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

Keywords

AMSU-A / diurnal adjustment / decadal temperature trend

Cite this article

Download citation ▾
H. CHEN, X. ZOU, Z. QIN. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data. Front. Earth Sci., 2018, 12(1): 1-16 DOI:10.1007/s11707-017-0671-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldrich J (1998). Doing least squares: perspectives from Gauss and Yule. Int Stat Rev66(1): 61–81

[2]

Andersson EHollingsworth AKelly GLonnberg PPailleux JZhang Z (1991). Global observing system experiments on operational statistical retrievals of satellite sounding data. Mon Weather Rev119(8): 1851–1864

[3]

Cao CWeinreb MXu H (2004). Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J Atmos Ocean Technol21(4): 537–542

[4]

Clough S AShephard M WMlawer E JDelamere J SIacono MCady-Pereira K EBoukabara SBrown P D (2005). Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf91(2): 233–244

[5]

Derber J CWu W S (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Weather Rev126(8): 2287–2299

[6]

Eyre J RKelly G AMcNally A PAndersson EPersson A (1993). Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteorol Soc119(514): 1427–1463

[7]

Ferraro R RWeng FGrody N CZhao L (2000). Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys Res Lett27(17): 2669–2672

[8]

Han YWeng FLiu Qvan Delst P (2007). A fast radiative transfer model for SSMIS upper atmosphere sounding channels. Journal of Geophysical Research: Atmospheres112(D11): D11121

[9]

Kroodsma R AMcKague D SRuf C S (2012). Inter-calibration of microwave radiometers using the vicarious cold calibration double difference method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing5: 1006–1013

[10]

Mears C ASchabel M CWentz F JSanter B DGovindasamy B (2002). Correcting the MSU middle tropospheric temperature for diurnal drifts. Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International3: 1839–1841

[11]

Mo T (1996). Prelaunch calibration of the advanced microwave sounding unit-A for NOAA-K. IEEE Trans Microw Theory Tech44(8): 1460–1469

[12]

Mo T (2007). Diurnal variation of the AMSU-A brightness temperatures over the Amazon rainforest. IEEE Transactions on Geoscience and Remote Sensing45: 958–969

[13]

Privette J LFowler CWick G ABaldwin DEmery W J (1995). Effects of orbital drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ53(3): 164–171

[14]

Tian XZou X (2016). ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J Geophys Res Atmos121(21): 12,630–12,646

[15]

Wang LGoldberg MWu XCao CIacovazzi R AYu FLi Y (2011). Consistency assessment of atmospheric infrared sounder and infrared atmospheric sounding interferometer radiances: double differences versus simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres116( D11): 755–764

[16]

Weng F (2007). Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci64(11): 3799–3807

[17]

Weng FGrody N C (2000). Retrieval of ice cloud parameters using a microwave imaging radiometer. J Atmos Sci57(8): 1069–1081

[18]

Weng FZhao LFerraro R RPoe GLi XGrody N C (2003). Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci38(4): 8068

[19]

Zou CGoldberg M DCheng ZGrody N CSullivan J TCao CTarpley D (2006). Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres111( D19): 5455–5464

[20]

Zou CWang W (2011). Intersatellite calibration of AMSU-A observations for weather and climate applications.  Journal of Geophysical Research: Atmospheres,  116( D23): 23113

[21]

Zou XWang XWeng FLi G (2011). Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J Atmos Ocean Technol28(10): 1206–1227

[22]

Zou XWeng FYang H (2014). Connecting the time series of microwave sounding observations from AMSU to ATMS for long-term monitoring of climate. Journal of Atmospheric & Oceanic Technology31(10): 2206–2222

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (7028KB)

1449

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/