Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level

Kaixuan AN , Hanlin CHEN , Xiubin LIN , Fang WANG , Shufeng YANG , Zhixin WEN , Zhaoming WANG , Guangya ZHANG , Xiaoguang TONG

Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (4) : 740 -750.

PDF (6021KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (4) : 740 -750. DOI: 10.1007/s11707-017-0661-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level

Author information +
History +
PDF (6021KB)

Abstract

The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.

Keywords

global sea-level changes / Late Cretaceous / transgression / sedimentary facies / northern Africa

Cite this article

Download citation ▾
Kaixuan AN, Hanlin CHEN, Xiubin LIN, Fang WANG, Shufeng YANG, Zhixin WEN, Zhaoming WANG, Guangya ZHANG, Xiaoguang TONG. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level. Front. Earth Sci., 2017, 11(4): 740-750 DOI:10.1007/s11707-017-0661-0

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Sea levels have fluctuated frequently throughout Earth’s history, resulting in consequent transgression/regression cycles. Within these eustatic events, the Late Cretaceous transgression is thought to represent the highest sea-level in geologic past (Haq et al, 1987; Miller et al., 2004, 2005; Miller and Pekar, 2005; Guiraud et al., 2005; Fluteau et al., 2007; Müller et al, 2008), which was under a ‘Greenhouse Climate’ (Larson and Erba, 1999; Wilson et al., 2002; Jenkyns et al, 2004; Miller and Pekar, 2005; Hay and Floegel, 2012; Wendler and Wendler, 2016) with more frequent and rapid sea-level fluctuations (Hancock and Kauffman, 1979; Haq et al., 1987; Larson, 1991a; Kauffman and Caldwell, 1993; Bosellini et al., 1999a; Jarvis et al., 2002; Haq and Al-Qahtani, 2005; Miller et al., 2005; Wang and Hu, 2005; Haq, 2014). This high sea-level event was proposed to take place during ca. 95–80 Ma (Haq et al, 1987; Miller et al., 2004; Guiraud et al., 2005; Miller and Pekar, 2005; Fluteau et al., 2007; Müller et al., 2008), which would exert a broad impact on climate and deposition in addition to bearing important implications for global tectonics (Bosellini et al., 1999b; Adatte et al., 2002; Bachmann and Hirsch, 2006; Fluteau et al., 2007; Kidder and Worsley, 2010).

Previous studies on the Late Cretaceous high sea-level event were mostly based on paleoclimatic changes constrained by carbonate and foraminifera carbon and oxygen isotopes, concentrations of atmospheric carbon dioxide and oxygen, sea surface temperatures, and other methods (Hancock and Kauffman, 1979; Kauffman and Caldwell, 1993; Bosellini et al., 1999a; Jarvis et al., 2002; Wang and Hu, 2005), with some studies directly showing the sea-level changes through reconstruction of sea-level curves (Haq et al., 1987; Haq and Al-Qahtani, 2005; Miller et al., 2005; Müller et al, 2008;Haq, 2014). The impact of the high sea-level event on deposition in continental basins has rarely been addressed. Basin sediments are effective in recording paleoclimate, paleoenvironment, and sea-level history (Gale et al., 2002; Haq and Al-Qahtani, 2005; Wang et al., 2013; Haq, 2014; Giorgioni et al., 2015; Wendler and Wendler, 2016). Such work has been conducted in New Jersey margin and succeeds in backstripping the sea-level history (Watts and Thorne, 1984; Kominz et al., 1998, 2008; Miller et al., 1998, 2008; Miller and Pekar, 2005). Northern Africa, which formed part of the stable northern margins of Gondwanaland during Cretaceous (Goncuoglu and Kozlu, 2000; Badalini et al., 2002; Veevers, 2004) and should be very sensitive to the Late Cretaceous high sea-level event, has been rarely addressed (except for a primary study by Guiraud et al., 2005).

This paper presents our systematic review on Cretaceous stratigraphy compiled from 22 continental basins in northern Africa (Fig. 1). We established 12 time segments (12 ages in Cretaceous period) of distribution of sedimentary facies to reveal the spatio-temporal variations of deposition in this region. Dominance of marine facies deposition has been used as an indicator of transgression and the high sea-level event.

Geological setting

After formation of the Gondwanaland during the Pan-Africa tectonism (Veevers, 2004; Viola et al., 2008; Santosh et al., 2009), northern Africa formed part of the stable north margins of the Gondwanaland until its collision with the Laurentia during Carboniferous-Permian. This collision caused widespread uplift, denudation and sedimentary hiatus or foreland deposition in northern Africa (Badalini et al., 2002; Guiraud et al., 2005). After the Triassic opening of the North Atlantic Ocean (Mosar et al., 2002; Stoker et al., 2005), northern Africa returned into a passive continental margin setting and sustained tectonic stabilization during the breakup of the Gondwanaland since Jurassic (Badalini et al., 2002; Veevers, 2004), although subordinate extension may exert impact within the breakup episode (Meert, 2003; Guiraud et al., 2005). During Cenozoic, the Atlas orogeny caused significant deformation and erosion in northernmost Africa (Barbero et al., 2007; Haji et al., 2014).

In particular, the Cretaceous northern Africa was in a tectonic-stable setting and located in the northern margins of the Gondwanaland facing the Tethys Ocean (Goncuoglu and Kozlu, 2000; Badalini et al., 2002), providing an ideal place that was sensitive to the sea-level fluctuations at this time. Thick continental and marine facies sediments that were deposited in the continental basins of this region (Adatte et al., 2002; Guiraud et al., 2005) open a window to reveal the impact of the Late Cretaceous high sea-level event.

Methods

Twenty-two basin-stratigraphic datasets were obtained from the IHS energy database. These datasets cover most basins in northern Africa (Fig. 1), allowing the deposition and sedimentary facies to be constrained in a spatial resolution of basin-scale. The stratigraphic datasets were compiled at different time segments allowing for the sedimentary facies of the region to be established in a temporal resolution of age-scale.

In this study, stratigraphic datasets from 15 representative basins were selected to construct three sections, one orientating W-E and the other two orientating N-S (Fig. 1). The W-E-direct stratigraphic section covers five basins, including Senegal MSGBC, Taoudeni, Iullemmeden, Chad and Al Kufra Basins from west to east (Fig. 1). The N-S-direct section N-S-1 crosses Nile Delta, Upper Egypt, Khartoum, Melut and Muglad Basins, while the other N-S-direct section N-S-2 covers Pelagian, Sirte, Ghadames, Murzuq and Chad Basins from north to south (Fig. 1). These stratigraphic sections cover most areas of northern Africa, allowing the variation of deposition to be well constrained. Twelve time segments (12 Cretaceous ages) of sedimentary facie distribution were established. The dominated sedimentary facies were selected to represent facies for each age. For simplification, sedimentary facies in this study were divided into three types, including fluvo-alluvial, lacustrine, and marine.

Cretaceous stratigraphy in northern Africa

The Cretaceous stratigraphy in northern Africa is presented in this study through the description of the three aforementioned representative sections. These sections cover most basins in northern Africa and thus provide insights into the main characteristics of the sedimentary variations in the region.

In the W-E section, sediments in the Dakar-Banjul region of the Senegal MSGBC Basin were dominated by limestone and dolomite while sandstone-siltstone-mudstone packages with limestone were dominant in the Orango-Conakry region during Berriasian to Aptian (Fig. 2). From Albian to Maastrichtian, mudstone-siltstone-mudstone packages prevailed in the basin with occasional limestone, marl, and volcanic rocks (Fig. 2). The Taoudeni Basin did not witness significant variation in sediments during Cretaceous and was dominated by sandstone and mudstone (Fig. 2). Systematic variation in sediments occurred in the Iullemmeden and Chad Basins, with the emergence of limestone since Turonian (Fig. 2), along with the prevalence of sandstone and subordinate mudstone and siltstone. The Iullemmeden Basin provides an extreme example for such change, with limestone dominating the basin from Turonian to Campanian (Fig. 2). Sediments in Al Kufra Basin were dominated by sandstone and subordinate marl during Early Cretaceous, with Late Cretaceous sediments absent (Fig. 2). The presence of preserved Late Cretaceous sediments to the south and north of the basin (Fig. 3) implies that Late Cretaceous sediments were deposited in the Al Kufra Basin, with subsequent erosions speculated in later tectonic events.

In the N-S-1 section, the lowermost Cretaceous sediments in the Nile Delta Basin have not yet been penetrated or proven by boreholes. The fact that a hiatus occurred in the surrounding regions during the latest Jurassic to earliest Cretaceous (Sestini, 1984, 1989; Keeley, 1994) implies that deposition of the lowermost Cretaceous sediments in the basin is unlikely. The remainder of the Cretaceous succession was composed of sandstone-mudstone-limestone-dolomite packages in the Nile Delta Basin (Fig. 3). The other basins in this section were affected by multiple episodes of extension spanning from Jurassic to early Cenozoic (Bosworth, 1992; Guiraud and Maurin, 1992), documented by episodic hiatus, unconformity, conglomerate, and volcanic rocks during Cretaceous (Fig. 3). Taking these as an exception, deposition was typically dominated by sandstone-mudstone packages with prevailing siltstone during Cenomanian to Campanian in the Upper Egypt Basin, minor siltstone in the Muglad Basin, and subordinate limestone during Maastrichtian in the Upper Egypt and Khartoum Basins (Fig. 3).

In the N-S-2 section, sediments in Pelagian Basin were dominated by limestone and subordinate mudstone throughout Cretaceous (Fig. 4). In the Sirte and Ghadames Basins, sandstone-mudstone packages with occasional limestone prevailed during Early Cretaceous; while sediments shifted into mudstone-limestone-dominated sequences with subordinate evaporite, marl, and dolomite in Late Cretaceous (Fig. 4). Such a shift of an upward-finer sequence was also observed in Chad Basin, with limestone emerging in Late Cretaceous compared to sandstone-mudstone packages with occasional siltstone during Early Cretaceous (Fig. 4). The Early Cretaceous strata in the Murzuq Basin were dominated by sandstone with occasional conglomerate; while the Late Cretaceous sequences were absent (Fig. 4). Again, considering the fact that the Late Cretaceous sediments were preserved to the south and north of the basin (Fig. 4), it can be assumed that sediments were deposited in the basin during Late Cretaceous, and then eroded by later tectonic events.

Interpretation and spatio-temporal distribution of the Cretaceous sedimentary facies in northern Africa

The stratigraphy described above provides direct constraint for determining the sedimentary facies of these basins in a temporal age-scale. The chief facies type of each age has been selected to represent the sedimentary facies of a specific basin. Given these basins cover most regions of northern Africa, the distribution of sedimentary facies has been established in a temporal age-scale and spatial basin-scale through this process.

In the W-E section, sediments in the Senegal MSGBC Basin suggest that deposition of marine facies was dominant during Cretaceous, including transitional to platform during Berriasian to Aptian, transitional with subordinate platform facies during Albian, shallow marine facies from Cenomanian to Coniacian, and transitional to shallow marine facies from Santonian to Maastrichtian (Fig. 2). The Taoudeni Basin was dominated by sandstone-mudstone packages during Cretaceous. The regional sediment variation leads to an interpretation that sedimentary facies changed from fluvo-alluvial- and lacustrine-dominated facies during Berriasian to Albian to shallow marine facies from Cenomanian to Maastrichtian (Fig. 2). The Iullemmeden and Chad Basins underwent a similar continental-marine-continental facies variation during Cretaceous, with the timing of shift from continental to marine facies changing from Cenomanian in the Chad Basin to Turonian in the Iullemmeden Basin (Fig. 2). The sediments in the Al Kufra Basin during Berriasian to Albian have been interpreted as fluvo-alluvial facies with subordinate lacustrine facies, with later Cretaceous sediments absent in the basin (Fig. 2).

In the N-S-1 section, the sandstone-mudstone-limestone/dolomite packages in the Nile Delta Basin have been interpreted to represent marine facies deposition, including shelf, delta, and platform settings (Fig. 3). The sediments deposited in the Upper Egypt Basin suggest fluvo-alluvial-dominated deposition in Early Cretaceous, with deposition dominated by transitional to shallow marine facies in Aptian, and marine facies dominant in Late Cretaceous with a short-lived local uplift resulting in a hiatus during Santonian (Fig. 3). The other three basins in this section were dominated by alternating fluvo-alluvial and lacustrine facies deposition during Cretaceous (Fig. 3).

In the N-S-2 section, a systematic shift from continental to marine facies occurred in Sirte, Ghadames, Chad, and possibly Murzuq Basins at the Early/Late Cretaceous boundary (approximately during Cenomanian) (Fig. 4). Notably, the aforementioned deposition in Chad Basin returned to fluvo-alluvial facies during Maastrichtian (Fig. 4). The Pelagian Basin was however dominated by marine facies deposition during Cretaceous.

The stratigraphy, lithology, and sedimentary facies interpretations of these specific basins provide constraint for determining spatio-temporal distributions of sedimentary facies in northern Africa during Cretaceous. These distributions were constructed for 12 ages in this study (Figs. 5–7).

The results indicate that northern Africa was covered by continental sediments of fluvo-alluvial and lacustrine facies during Early Cretaceous (from Barriasian to Albian), with subordinate marine facies deposition distributed along the western and northern margins (Figs. 5, 6(a) and 6(b)). Deposition of marine facies was limited in the Senegal MSGBC and Aaiun Tarfaya Basin west to the Taoudeni Basin in the western margin (Fig. 5). In the northern margin, sediments of marine facies distributed north to the Tindouf-Ghadames-Sirte-Upper Egypt Basins during Early Cretaceous (Figs. 5, 6(a) and 6(b)). A minor transgression occurred during Aptian, with deposition of marine facies reaching the Upper Egypt Basin (Fig. 6(a)), followed by a slight regression in Albian with marine facie sediments retreating from the basin (Fig. 6(b)).

In contrast to the prevalence of continental deposition during Early Cretaceous, northern Africa was dominated by deposition of marine facies during Late Cretaceous (Figs. 6(c), 6(d), and 7). During Cenomanian, a significant transgression occurred, resulting in the marine facies sediments reaching the Taoudeni-Chad-Al Kufra-Upper Egypt Basins (Fig. 6(c)). Transgression continued during Turonian, with the Iullemmeden Basin covered by deposition of marine facies (Fig. 6(d)). Marine facies deposition maintained in a broad region reaching as far south as the Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt Basins until Campanian (except for a local hiatus in Upper Egypt Basin during Santonian) (Figs. 7(a)‒7(c)), before a significant regression during Maastrichtian when marine sediments retreated from the Iullemmeden-Chad-Al Kufra Basins (Fig. 7(d)).

Discussion

Transgression in northern Africa during Turonian to Campanian consistent with the synchronous highest global sea-level

The results in this study indicate several transgression and regression events in northern Africa during Cretaceous. Within these, the most notable transgression happened at the Early/Late Cretaceous boundary (Fig. 8), evidenced by significant expansion of marine facies sediments (Figs. 5–7). The largest transgression took place during Turonian to Coniacian, with the marine facies deposition reaching the Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt Basins in northern Africa (Fig. 6 and Fig. 7).

The largest transgression in northern Africa could be related to tectonic extension of the basins (Guiraud et al., 2005). However, the fact that this event was synchronous with the Late Cretaceous global high sea-level (Fig. 8) implies the transgression event is more likely attributed to the global high sea-level during this time (Miller and Pekar, 2005; Kominz et al., 2008; Miller et al., 2008;Haq, 2014). Previous sea-level curves suggest that the highest levels occurred during ca. 95‒80 Ma (Haq et al., 1987; Kominz et al., 1998; Miller and Pekar, 2005; Kominz et al., 2008; Miller et al., 2008; Haq, 2014), consistent with the time interval of the largest transgression in northern Africa observed in this study. Based on comprehensive reconstruction of bathymetry and distribution of ocean basins, Müller et al. (2008) estimated that the sea-level was 170 m higher during this time, high enough to create the widespread marine facies sediments in the basins in northern Africa.

Likely driving mechanism for the highest global sea-level in Late Cretaceous

Global sea-level is dominated by two major factors: the volume of ocean water and the volume of the ocean basin (Müller et al., 2008). With these factors, the volume of ocean water is primarily determined by climate (Wagreich et al., 2014), while the volume of the ocean basin relies on oceanic crustal and seamount production (Gurnis, 1990; Husson and Conrad, 2006; Moucha et al., 2008; Müller et al., 2008).

High CO2 concentration and the subsequent extreme greenhouse climate during Late Cretaceous would exert a direct effect on increasing the volume of ocean water (DeConto and Pollard, 2003; Robson et al., 2014; Sames et al., 2016). Benthic foraminifera d18O and d13C data indicate high sea surface temperature, corresponding to an extremely warm climate since the Cenomanian/Turonian boundary (Huber et al., 1995, 2002; Stoll and Schrag, 2000; Price and Hart, 2002; Friedrich et al., 2008, 2012; Wang et al., 2014). These data are consistent with the carbon isotope results obtained from chalk successions in England, France, and Tunisia by Jarvis et al. (2002, 2006). Such high temperatures should be related to a synchronously high concentration of greenhouse gas CO2, proven to be a primary driver for the Phanerozoic greenhouse climate (Royer et al., 2004; Wang et al., 2014). Berner and Kothavala (2001) and Bice and Norris (2002) demonstrated that the CO2 concentration during Late Cretaceous was 4–10 times higher than the present (pre-industrial) value, providing a direct correlation between greenhouse climate and the subsequently high global sea-level during Late Cretaceous (Berner, 1992; Wignall, 2001; Bodin et al., 2015). Given the extreme Late Cretaceous warming climate, both continental and polar ice sheets melted and flowed into the ocean (DeConto and Pollard, 2003; Miller and Pekar, 2005; Miller et al., 2005; Robson et al., 2014; Sames et al., 2016) thus increasing ocean water volume (Stoll and Schrag, 1996). In addition, thermal expansion of seawater was also a potential factor for the increase (Cazenave and Llovel, 2010).

Rapid production of oceanic crust and seamounts during Late Cretaceous would efficiently decrease the volume of the ocean basin (Kerr, 1998; Larson and Erba, 1999; Bodin et al., 2015). Previous studies indicated that the oceanic crustal production rate reached 57×106 km3/Ma (Jones, 2001) at the Cenomanian/Turonian boundary (Larson, 1991b; Kerr, 1998; Larson and Erba, 1999), ca. 1.8 times more than at present (Larson, 1991a). During this time, the South Atlantic Ocean opened rapidly (Torsvik et al., 2009). In addition, the seamount/plateau caused by oceanic Large Igneous Provinces (LIPs) was widespread during Late Cretaceous (Jones, 2001; Bryan and Ferrari, 2013) thus decreasing the volume of the ocean basin. Ontong Java and Kerguelen LIPs provide two extreme examples for this scenario. The Ontong Java LIPs in the Pacific Ocean covered an area of ca. 4.88×106 km2 (almost three times greater than Alaska), while the Kerguelen LIPs in the Indian Ocean covered an area of ca. 2.30×106 km2 (Coffin and Eldholm, 1994).

In addition, the outgassing process during the rapid oceanic crust and seamount production in Late Cretaceous would release more greenhouse gas into the atmosphere resulting in an extremely warm climate and high global sea-level (Jones, 2001; Wignall, 2001; Tejada et al., 2009; Bryan and Ferrari, 2013). Therefore, we cautiously attribute the large transgression and global high sea-level during Late Cretaceous (with peak during Turonian to Coniacian) to rapid production of oceanic crust and seamounts of a tectonic mechanism.

Conclusions

In this study, stratigraphic data of 22 continental basins in northern Africa were analyzed to construct the spatio-temporal distribution of sedimentary facies during the Cretaceous. The results suggest that marine facies deposition reached as far south as the Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt Basins, implying a significant transgression in Late Cretaceous, with peak transgression during Turonian to Coniacian. The transgression was synchronous with the global rise in sea-level during this time, suggesting a direct attribution of the transgression to the high sea-level event.

References

[1]

Adatte TKeller GStinnesbeck W (2002). Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol178(3–4): 165–196

[2]

Bachmann MHirsch F (2006). Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretac Res27(4): 487–512

[3]

Badalini GRedfern JCarr I D (2002). A synthesis of current understanding of the structural evolution of North Africa. J Pet Geol25(3): 249–258

[4]

Barbero LTeixell AArboleya M LRío PReiners P WBougadir B (2007). Jurassic-to-present thermal history of the central High Atlas (Morocco) assessed by low-temperature thermochronology. Terra Nova19(1): 58–64

[5]

Berner R A (1992). Palaeo-CO2 and climate. Nature358(6382): 114

[6]

Berner R AKothavala Z (2001). Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci301(2): 182–204

[7]

Bice K LNorris R D (2002). Possible atmospheric CO2 extremes of the middle Cretaceous (late Albian–Turonian). Paleoceanography17(4): 22-1–22-17

[8]

Bodin SMeissner PJanssen N M MSteuber TMutterlose J (2015). Large igneous provinces and organic carbon burial: controls on global temperature and continental weathering during the early cretaceous. Global Planet Change133: 238–253

[9]

Bosellini AMorsilli MNeri C (1999a). Long-term event stratigraphy of the apulia platform margin (Upper Jurassic to Eocene, Gargano, Southern Italy). J Sediment Res69(6): 1241–1252

[10]

Bosellini ARusso ASchroeder R (1999b). Stratigraphic evidence for an early aptian sea-level fluctuation: the graua limestone of south-eastern ethiopia. Cretac Res20(6): 783–791

[11]

Bosworth W (1992). Mesozoic and early Tertiary rift tectonics in east Africa. Tectonophysics209(1–4): 115–137

[12]

Bryan S EFerrari L (2013). Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull125(7–8): 1053–1078 

[13]

Cazenave ALlovel W (2010). Contemporary sea level rise. Annu Rev Mar Sci2(1): 145–173

[14]

Coffin M FEldholm O (1994). Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys32(1): 1–36

[15]

DeConto R MPollard D (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature421(6920): 245–249

[16]

Fluteau FRamstein GBesse JGuiraud RMasse J P (2007). Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeogr Palaeoclimatol Palaeoecol247(3–4): 357–381

[17]

Friedrich OErbacher JMoriya KWilson P AKuhnert H (2008). Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nat Geosci1(7): 453–457

[18]

Friedrich ONorris R DErbacher J (2012). Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth’s temperature and carbon cycle. Geology40(2): 107–110

[19]

Gale A SHardenbol JHathway BJames Kennedy WYoung J RPhansalkar V (2002). Global correlation of Cenomaian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology30(4): 291–294

[20]

Giorgioni MWeissert HBernasconi S MHochuli P AKeller C ECoccioni RPetrizzo M RLukeneder AGarcia T I (2015). Paleoceanographic changes during the Albian-Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk. Global Planet Change126: 46–61

[21]

Goncuoglu M CKozlu H (2000). Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Res3(3): 315–324

[22]

Guiraud RBosworth WThierry JDelplanque A (2005). Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci43(1-3): 83–143

[23]

Guiraud RMaurin J C (1992). Early Cretaceous rifts of western and central Africa: an overview. Tectonophysics213(1–2): 153–168

[24]

Gurnis M (1990). Ridge spreading, subduction, and sea level fluctuations. Science250(4983): 970–972

[25]

Haji TDhahri FMarco IBoukadi N (2014). New insights on the tectonic and paleogeographic evolution of the central Atlasic domain of Tunisia. Arab J Geosci7(4): 1605–1616

[26]

Hancock J MKauffman E G (1979). The great transgressions of the Late Cretaceous. J Geol Soc London136(2): 175–186

[27]

Haq B U (2014). Cretaceous eustasy revisited. Global Planet Change113(2): 44–58

[28]

Haq B UAl-Qahtani A M (2005). Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia10(2): 127–160

[29]

Haq B UHardenbol JVail P R (1987). Chronology of fluctuating sea levels since the Triassic. Science235(4793): 1156–1167

[30]

Hay W WFloegel S (2012). New thoughts about the Cretaceous climate and oceans. Earth Sci Rev115(4): 262–272

[31]

Huber B THodell D AHamilton C P (1995). Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull107(10): 1164–1191

[32]

Huber B TNorris R DMacleod K G (2002). Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology30(2): 123–126

[33]

Husson LConrad C P (2006). Tectonic velocities, dynamic topography, and relative sea level. Geophys Res Lett33(18): L1830318 

[34]

Jarvis IGale A SJenkyns H CPearce M A (2006). Secular variation in Late Cretaceous carbon isotopes: a new d13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag143(05): 561–608

[35]

Jarvis IMabrouk AMoody R T J, de Cabrera S (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoclimatol Palaeoecol188(3–4): 215–248

[36]

Jenkyns H CForster ASchouten SSinninghe Damsté J S (2004). High temperatures in the Late Cretaceous Arctic Ocean. Nature432(7019): 888–892

[37]

Jones C E (2001). Seawater strontium isotopes, ocean anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci301(2): 112–149

[38]

Kauffman E GCaldwell W G E (1993). The Western Interior basin in space and time.   Geological Association of Canada- Special Paper39

[39]

Keeley M L (1994). Phanerozoic evolution of the basins of Northern Egypt and adjacent areas. Geol Rundsch83(4): 728–742

[40]

Kerr A C (1998). Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? J Geol Soc London155(4): 619–626

[41]

Kidder D LWorsley T R (2010). Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol295(1–2): 162–191

[42]

Kominz M ABrowning J VMiller K GSugarman P JMizintseva SScotese C R (2008). Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: an error analysis. Basin Res20(2): 211–226

[43]

Kominz M AMiller K GBrowning J V (1998). Long-term and short-term global Cenozoic sea-level estimates. Geology26(4): 311–314

[44]

Larson R L (1991a). Geological consequences of superplumes. Geology19(10): 963–966

[45]

Larson R L (1991b). Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology19(6): 547–550

[46]

Larson R LErba E (1999). Onset of the mid-Cretaceous greenhouse in the Barremian Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography14(6): 663–678

[47]

Meert J G (2003). A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics362(1–4): 1–40

[48]

Miller K GMountain G SBrowning J VKominz MSugarman P JChristie-Blick NKatz M EWright J D (1998). Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Rev Geophys36(4): 569–601

[49]

Miller K GPekar S F (2005). The Phanerozoic record of global sea-level change. Science310(5752): 1293–1298

[50]

Miller K GSugarman P JBrowning J VKominz M AOlsson R KFeigenson M DHernández J C (2004). Upper Cretaceous sequences and sea-level history, New Jersey coastal plain. Geol Soc Am Bull116(3): 368–393 

[51]

Miller K GWright J DBrowning J V (2005). Visions of ice sheets in a greenhouse world. Mar Geol217(3–4): 215–231

[52]

Miller K GWright J DKatz M EBrowning J VCramer B SWade B S (2008). A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Proceedings of International Symposium on Antarctic Earth Sciences

[53]

Mosar JLewis GTorsvik T (2002). North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea. J Geol Soc London159(5): 503–515

[54]

Moucha RForte A MMitrovica J XRowley D BQuéré SSimmons N AGrand S P (2008). Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet Sci Lett271(1–4): 101–108

[55]

Müller R DSdrolias MGaina CSteinberger BHeine C (2008). Long-term sea-level fluctuations driven by ocean basin dynamics. Science319(5868): 1357–1362

[56]

Price G DHart M B (2002). Isotopic evidence for Early to mid-Cretaceous ocean temperature variability. Mar Micropaleontol46(1–2): 45–58

[57]

Robson JDan HHawkins ESutton R (2014). Atlantic overturning in decline? Nat Geosci7(7): 2–3

[58]

Royer D LBerner R AMontañez I PTabor N JBeerling D J (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today14(3): 4 

[59]

Sames BWagreich MWendler J EHaq B UConrad C PMelinte-Dobrinescu M CHu XWendler IWolfgring EYilmaz I ÖZorina S O (2016). Review: short-term sea-level changes in a greenhouse world-a view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol441(part 3): 393–411

[60]

Santosh MMaruyama SYamamoto S (2009). The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res15(3-4): 324–341

[61]

Sestini G (1984). Tectonic and sedimentary history of the NE African margin (Egypt—Libya). Geol Soc Lond Spec Publ17(1): 161–175 

[62]

Sestini G (1989). Nile Delta: a review of depositional environments and geological history. Geol Soc Lond Spec Publ41(1): 99–127

[63]

Stoker M SPraeg DHjelstuen B OLaberg J SNielsen TShannon P M (2005). Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin. Mar Pet Geol22(9–10): 977–1005

[64]

Stoll H MSchrag D P (1996). Evidence for glacial control of rapid sea level changes in the Early Cretaceous. Science272(5269): 1771–1774

[65]

Stoll H MSchrag D P (2000). High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? Geol Soc Am Bull112(2): 308–319

[66]

Tejada M L GSuzuki KKuroda JCoccioni RMahoney J JOhkouchi NSakamoto TTatsumi Y (2009). Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology37(9): 855–858

[67]

Torsvik T HRousse SLabails CSmethurst M A (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int177(3): 1315–1333

[68]

Veevers J J (2004). Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev68(1–2): 1–132 

[69]

Viola GHenderson I H CBingen BThomas R JSmethurst M Ade Azavedo S (2008). Growth and collapse of a deeply eroded orogen: insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics27(5): TC5009

[70]

Wagreich MSames BLein R (2014). Eustasy, its controlling factors, and the limno-eustatic hypothesis-concepts inspired by Eduard Suess. Mitt Osterr Geol Ges107: 115–131

[71]

Wang C SHu X M (2005). Cretaceous world and oceanic red beds. Earth Science Frontiers12(2): 11–21

[72]

Wang C SScott R WWan X QGraham S AHuang YWang PWu HDean W EZhang L (2013). Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth Sci Rev126(11): 275–299

[73]

Wang Y DHuang C MSun B NQuan CWu JLin Z (2014). Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci Rev129(1): 136–147

[74]

Watts A BThorne J (1984). Tectonics, global changes in sea level and their relationship to stratigraphical sequences at the US Atlantic continental margin. Mar Pet Geol1(4): 319–339

[75]

Wendler J EWendler I (2016). What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeogr Palaeoclimatol Palaeoecol441: 412–419

[76]

Wignall P B (2001). Large igneous provinces and mass extinctions. Earth Sci Rev53(1–2): 1–33

[77]

Wilson P ANorris R DCooper M J (2002). Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology30(7): 607–610

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (6021KB)

1486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/