Instream coliform gradients in the Holtemme, a small headwater stream in the Elbe River Basin, Northern Germany

Daniel KARTHE, Pei-Ying LIN, Katja WESTPHAL

PDF(1983 KB)
PDF(1983 KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (3) : 544-553. DOI: 10.1007/s11707-017-0648-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Instream coliform gradients in the Holtemme, a small headwater stream in the Elbe River Basin, Northern Germany

Author information +
History +

Abstract

The Holtemme is a small headwater stream in North Germany’s Elbe River Basin. According to German and European legislation, hygienic monitoring is not mandatory for such water bodies which are neither drinking water sources nor categorized as bathing waters. Consequently, relatively little is known about the occurrence of –potentially pathogenic– bacteria and viruses in Germany’s streams and rivers. The Holtemme was selected for a case study because it is relatively well monitored for both chemical water quality and aquatic ecology, but not for hygiene. Originating in the mountains of Harz Nature Park, the 47 km long Holtemme is characterized by a strong longitudinal gradient in chemical water quality, which is related to different land uses and the influx of treated wastewater from two urban areas (Wernigerode and Halberstadt). Waste water loads received by the Holtemme are comparatively high when compared to similarly small streams.

In 2015, total coliform concentrations between more than 200 and 77,010 bacteria per 100 mL, and fecal coliform concentrations between 5 and 24,060 bacteria per 100 mL were observed in the Holtemme’s main channel. The highest concentrations were typically found below the outlets of the two wastewater treatment plants. The treated wastewater contained total and fecal coliform concentrations of up to 200,500 and 83,100 per 100 mL, respectively; however, there were significant temporal variations. While the observed concentrations are unproblematic from a legal perspective (because no maximum permissible limits are defined for streams in Germany), they would exceed the tolerable limits for bathing waters in the EU, indicating moderate to critical pollution limits.

Keywords

surface water / stream / hygine / instream coliforms

Cite this article

Download citation ▾
Daniel KARTHE, Pei-Ying LIN, Katja WESTPHAL. Instream coliform gradients in the Holtemme, a small headwater stream in the Elbe River Basin, Northern Germany. Front. Earth Sci., 2017, 11(3): 544‒553 https://doi.org/10.1007/s11707-017-0648-x

References

[1]
Abraham W R, Petzoldt H, Strauch G (2005). Infektionsrisiken durch Mikroorganismen im Flutwasser. In: Böhme M, Krüger F, Ockenfeld K, Geller W, eds. Schadstoffbelastung nach dem Elbe-Hochwasser 2002, 60–66. Magdeburg, Germany: UFZ- Umweltforschungszentrum Leipzig-Halle GmbH
[2]
Bagde U S, Rangari A K (1999). Periodicity of coliform bacteria in an aquatic environment. Water Sci Technol, 40(7): 151–157
CrossRef Google scholar
[3]
Bessa L J, Barbosa-Vasconcelos A, Mendes Â, Vaz-Pires P, Martins da Costa P (2014). High prevalence of multidrug-resistant Escherichia coli and Enterococcus spp. in river water, upstream and downstream of a wastewater treatment plant. J Water Health, 12(3): 426–435
CrossRef Google scholar
[4]
Bougeard M, Le Saux J C, Teillon A, Belloir J, Le Mennec C, Thome S, Durand G, Pommepuy M (2011). Combining modeling and monitoring to study fecal contamination in a small rural catchment. J Water Health, 9(3): 467–482
CrossRef Google scholar
[5]
Ecosystem Saxonia (2014). Anwendung der BWK-Merkblätter M3 / M7 für den einfachen und detaillierten Nachweis für die immissionsbezogene Beurteilung von Niederschlagswassereinleitungen aus dem Mischwassernetz der Ortslage Halberstadt in die Holtemme mit dem Programm Verena.M7. Unpublished Document
[6]
Edeline F, Lambert G (1979). Self-purification of rivers a two-phase model for bacterial biodegradation. Water Res, 13(6): 473–480
CrossRef Google scholar
[7]
Funari E, Manganelli M, Sinisi L (2012). Impact of climate change on waterborne diseases. Annali dell’ Instituto superiore di sanità, 48(4): 473–487
CrossRef Google scholar
[8]
Graw M, Borchardt D (1995). Hygienerelevante Belastungen von Fließgewässern: Bewertung und Sanierungsmöglichkeiten am Beispiel der Lahn. gwf Wasser Abwasser, 136(11): 567–571
[9]
Kamjunke N, Büttner O, Jäger C G, Marcus H, von Tümpling W, Halbedel S, Norf H, Brauns M, Baborowski M, Wild R, Borchardt D, Weitere M (2013). Biogeochemical patterns in a river network along a land use gradient. Environ Monit Assess, 185(11): 9221–9236
CrossRef Google scholar
[10]
Kammerad B (2011). Die Holtemme. Angler und Fischer in Sachsen-Anhalt, (14): 19–20
[11]
Karrasch B, Mehrens M, Link U, Herzog M (2004). Teilprojekt 9: Schadstoffbelastung und Selbstreinigungsvermögen der Elbe. In: Geller W, Ockenfeld K, Böhme M, Knöchel A, eds. Schadstoffbelastung nach dem Elbe-Hochwasser 2002, 389–402. Magdeburg, Germany: UFZ- Umweltforschungszentrum Leipzig-Halle GmbH
[12]
Karthe D (2015). Bedeutung hydrometeorologischer Extremereignisse im Kontext des Klimawandels für die Trinkwasserhygiene in Deutschland und Mitteleuropa. Hydrol Wasserbewirtsch, 59(5): 264–270
[13]
Karthe D, Behrmann O, Blättel V, Elsässer D, Heese C, Ho J, Hügle M, Hufert F, Kunze A, Niessner R, Ho J, Scharaw B, Spoo M, Tiehm A, Urban G, Vosseler S, Westerhoff T, Dame G, Seidel M (2016). Modular development of an inline monitoring system for waterborne pathogens in raw and drinking water. Environ Earth Sci, 75(23): 1481
CrossRef Google scholar
[14]
Kirschner A K T, Kavka G G, Velimirov B, Mach R L, Sommer R, Farnleitner A H (2009). Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Water Res, 43(15): 3673–3684
CrossRef Google scholar
[15]
Kistemann T, Christoffels E, Franke C, Rechenburg A, Willkomm M, Exner M (2007). Mikrobielle Belastung der Fließgewässer aus diffusen Eintragspfaden am Beispiel der Swist.Abschlußbericht zum Forschungsprojekt „Swist III“. Institut für Hygiene und Öffentliche Gesundheit der Universität Bonn und Erftverband, Bergheim
[16]
Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Appl Environ Microbiol, 68(5): 2188–2197
CrossRef Google scholar
[17]
Länderarbeitsgemeinschaft Wasser (=LAWA) (2003). Arbeitshilfe zur Umsetzung der EG-Wasserrahmenrichtlinie
[18]
Landesbetrieb für Hochwasserschutz und Wasserbewirtschaftung (=LHW) Sachsen-Anhalt (2012). Deutsches Gewässerkundliches Jahrbuch. Elbegebiet, Teil I: Von der Grenze zur CR bis zur Havelmündung. Magdeburg, Germany
[19]
Landesbetrieb für Hochwasserschutz und Wasserbewirtschaftung (=LHW) Sachsen-Anhalt (2016). Discharge data for the Holtemme at Steinerne Renne and Mahndorf. http://www.hochwasservorhersage.sachsen-anhalt.de/wiskiwebpublic/list_W_2.htm
[20]
Lange K P, Franke D, Kußmann S (2014). Bewertung der Mischwassereinleitungen von Halberstadt in die Holtemme – Ableitung situationsgerechter Maßnahmen. Wasser und Abfall, 16(9): 10–17
CrossRef Google scholar
[21]
St Laurent J, Mazumder A (2014). Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition. Water Res, 48: 170–178
CrossRef Google scholar
[22]
Mälzer H J, aus der Beek T, Müller S, Gebhardt J (2015). Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany. Int J Hyg Environ Health
CrossRef Google scholar
[23]
Noble R T, Lee I M, Schiff K C (2004). Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J Appl Microbiol, 96(3): 464–472
CrossRef Google scholar
[24]
Pitkänen T, Paakkari P, Miettinen I T, Heinonen-Tanski H, Paulin L, Hänninen M L (2007). Comparison of media for enumeration of coliform bacteria and Escherichia coli in non-disinfected water. J Microbiol Methods, 68(3): 522–529
CrossRef Google scholar
[25]
Reder K, Flörke M, Alcamo J (2015). Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ Model Softw, 63: 251–263
CrossRef Google scholar
[26]
Rompré A, Servais P, Baudart J, de-Roubin M R, Laurent P (2002). Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods, 49(1): 31–54
CrossRef Google scholar
[27]
Sächsisches Landesamt für Umwelt und Geologie (=SLUG) (2002). Bewertung der Gewässerbelastung im Elbeeinzugsgebiet. August – Hochwasser 2002, Berichtszeitraum 15. August bis 6. September 2002. Dresden, Germany
[28]
Schreiber C, Kistemann T (2012). Antibiotic resistance among autochthonous aquatic environmental bacteria. Water Sci Technol, 67(1): 117–123
CrossRef Google scholar
[29]
Schreiber C, Rechenburg A, Koch C, Chriftoffels E, Claβen T, Willkomm M, Mertens F M, Brunsch A, Herbst S, Rind E, Kistemann T (2016). Two decades of system-based hygienic-microbiological research in Swist river catchment (Germany). Environ Earth Sci, doi: 10.1007/s12665-016-6100-9
CrossRef Google scholar
[30]
Schultz-Fademrecht C, Wichern M, Horn H (2008). The impact of sunlight on inactivation of indicator microorganisms both in river water and benthic biofilms. Water Res, 42(19): 4771–4779
CrossRef Google scholar
[31]
Schulz C J, Childers G W (2011). Estimating changes in river faecal coliform loading using nonparametric multiplicative regression. J Water Health, 9(1): 117–127
CrossRef Google scholar
[32]
Shelton D R, Pachepsky Y A, Kiefer L A, Blaustein R A, McCarty G W, Dao T H (2014). Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water. Water Res, 59: 316–324
CrossRef Google scholar
[33]
Sorokovikova L M, Popovskaya G I, Tomberg I V, Sinyukovich V N, Kravchenko O S, Marinaite I I, Bashenkhaeva N V, Khodzher T V (2013). The Selenga river water quality on the border with Mongolia at the beginning of the 21st Century. Russ Meteorol Hydrol, 38(2): 126–133
CrossRef Google scholar
[34]
Stapleton C, Wyer M, Crowther J, McDonald A, Kay D, Greaves J, Wither A, Watkins J, Francis C, Humphrey N, Bradford M (2008). Quantitative catchment profiling to apportion faecal indicator organism budgets for the ribble system, the UK’s sentinel drainage basin for water framework directive research. J Environ Manage, 87(4): 535–550
CrossRef Google scholar
[35]
Strauch G, Sbjeschni A, Bittkau A, Schlosser D (2004). Teilprojekt 6: Schadstofftransport in überfluteten Trinkwassereinzugsgebieten. In: Geller W, Ockenfeld K, Böhme M, Knöchel A (Ed). Schadstoffbelastung nach dem Elbe-Hochwasser 2002, pp. 305–313. Magdeburg, Germany: UFZ- Umweltforschungszentrum Leipzig-Halle GmbH
[36]
Taiwan Environmental Protection Administration (EPA) (2016). Regulations for River Monitoring. Online at http://wq.epa.gov.tw/Code/Business/Statutory.aspx?Languages=en; last accessed on 8 July 2016
[37]
Tiefenthaler L, Stein E, Lyon G (2009). Fecal indicator bacteria (FIB) levels during dry weather from Southern California reference streams. Environ Monit Assess, 155(1–4): 477–492
CrossRef Google scholar

Acknowledgement

This study was funded by the Helmholtz Centre for Environmental Research. We thank Ms. Gunsmaa Batbayar for assisting us during three sampling campaigns, and Florian Pöhlein for assisting us during one sampling campaign. We thank the reviewers for their detailed comments which have helped to improve this manuscript significantly.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1983 KB)

Accesses

Citations

Detail

Sections
Recommended

/