Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ

PDF(5147 KB)
PDF(5147 KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 37-51. DOI: 10.1007/s11707-017-0646-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

Author information +
History +

Abstract

For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountain Western United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multi-sensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness (p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region’s vegetation decline due to drought, shed further light on the future directions and challenges to the region’s already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

Keywords

drought / remote sensing / Hopi / Navajo Nation

Cite this article

Download citation ▾
Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA. Front. Earth Sci., 2018, 12(1): 37‒51 https://doi.org/10.1007/s11707-017-0646-z

References

[1]
Alcaraz D, Paruelo  J, Cabello J (2006). Identification of current ecosystem functional types in the Iberian Peninsula. Glob Ecol Biogeogr, 15(2): 200–212
CrossRef Google scholar
[2]
Anyamba A, Tucker  C (2005). Analysis of sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ, 63(3): 596–614
CrossRef Google scholar
[3]
Bainbridge D A (2012). Restoration of arid and semi-arid lands. Restoration Ecology: The New Frontier, 115
[4]
Below R, Grover-Kopec  E, Dilley M (2007). Documenting drought-related disasters: a global reassessment. J Environ Dev, 16(3): 328–344
CrossRef Google scholar
[5]
Boschetti M, Nutini  F, Brivio P A,  Bartholomé E,  Stroppiana D,  Hoscilo A (2013). Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS Journal of Photogrammetry and Remote Sensing, 78: 26–40
CrossRef Google scholar
[6]
Breshears D D,  Cobb N S,  Rich P M,  Price K P,  Allen C D,  Balice R G,  Romme W H,  Kastens J H,  Floyd M L,  Belnap J,  Anderson J J,  Myers O B,  Meyer C W (2005). Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA, 102(42): 15144–15148
CrossRef Google scholar
[7]
Byun H, Wilhite  D A (1999). Objective quantification of drought severity and duration. J Clim, 12(9): 2747–2756
CrossRef Google scholar
[8]
Cai X L, Sharma  B R (2010). Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the indo-gangetic river basin. Agric Water Manage, 97(2): 309–316
CrossRef Google scholar
[9]
Cook E R, Woodhouse  C A, Eakin  C M, Meko  D M, Stahle  D W (2004). Long-term aridity changes in the western United States. Science, 306(5698): 1015–1018
CrossRef Google scholar
[10]
Crimmins M A, Selover  N, Cozzetto K,  Chief K (2013). Technical Review of the Navajo Nation Drought Contingency Plan – Drought Monitoring. Meadow A M, ed. Tucson, AZ: Climate Assessment for the Southwest
[11]
Delbart N, Le Toan  T, Kergoat L,  Fedotova V (2006). Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens Environ, 101(1): 52–62
CrossRef Google scholar
[12]
Di Luzio M, Johnson  G L, Daly  C, Eischeid J K,  Arnold J G (2008). Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J Appl Meteorol Climatol, 47(2): 475–497
CrossRef Google scholar
[13]
Didan K (2010). Multi-satellite earth science data record for studying global vegetation trends and changes. In: Proceedings of the 2010 international geoscience and remote sensing symposium, Honolulu, HI, USA, (Vol. 2530, p. 2530).
[14]
Didan K, Barreto  A M, Miura  T, Tsend-Ayush J,  Zhang X,  Friedl M,  Gray J, Van Leeuwen  W, Czapla-Myers J,  Doman B S,  Jenkerson C,  Maiersperger T,  Meyer D (2016). Multi-Sensor Vegetation Index and Phenology Earth Science Data Records: Algorithm Theoretical Basis Document and User Guide Version 4.0 (https://vip.arizona.edu/VIP_ATBD_UsersGuide.php)
[15]
Fang J, Piao  S, Tang Z,  Peng C, Ji  W (2001). Interannual variability in net primary production and precipitation. Science, 293(5536): 1723
CrossRef Google scholar
[16]
Fensholt R, Langanke  T, Rasmussen K,  Reenberg A,  Prince S D,  Tucker C,  Scholes R J,  Le Q B,  Bondeau A,  Eastman R,  Epstein H,  Gaughan A E,  Hellden U,  Mbow C, Olsson  L, Paruelo J,  Schweitzer C,  Seaquist J,  Wessels K (2012). Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens Environ, 121: 144–158
CrossRef Google scholar
[17]
Ferguson D, Crimmins  M A (2009). Who’s paying attention to the drought on the Colorado Plateau. Southwest Climate Outlook, 3–6. http://www.climas.arizona.edu/sites/default/files/pdf2009juldroughtcoplateau.pdf
[18]
Gamon J A, Huemmrich  K F, Stone  R S, Tweedie  C E (2013). Spatial and temporal variation in primary productivity (NDVI) of coastal alaskan tundra: decreased vegetation growth following earlier snowmelt. Remote Sens Environ, 129: 144–153
CrossRef Google scholar
[19]
Garfin G, Ellis  A, Selover N,  Anderson D,  Tecle A,  Heinrich P,  Crimmins M,  Leeper J,  Tallsalt-Robertson J,  Harvey C (2007). Assessment of the Navajo Nation Hydroclimate Network: A Final Report–12/28/2007. Navajo Nation Department of Water Resources. Available on the web: http://www. azwaterinstitute. org/media/Garfin% 20fact% 20sheet
[20]
Gesch D B, Oimoen  M J, Zhang  Z, Meyer D J,  Danielson J J (2012). Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States. In Imaging a sustainable future, 22nd Congress, 281–286
[21]
Grahame J D, Sisk  T D (2002). Canyons, cultures and environmental change: an introduction to the land-use history of the Colorado Plateau. The Land Use History of North America Program, United States Geological Survey
[22]
Gray S T, Betancourt  J L, Fastie  C L, Jackson  S T (2003). Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains. Geophys Res Lett, 30(6), 
CrossRef Google scholar
[23]
Griffin D, Woodhouse  C A, Meko  D M, Stahle  D W, Faulstich  H L, Carrillo  C, Touchan R,  Castro C L,  Leavitt S W (2013). North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett, 40(5): 954–958
CrossRef Google scholar
[24]
Herrmann S M, Didan  K, Barreto-Munoz A,  Crimmins M A (2016). Divergent responses of vegetation cover in Southwestern US ecosystems to dry and wet years at different elevations. Environ Res Lett, 11(12): 124005
CrossRef Google scholar
[25]
Horion S, Cornet  Y, Erpicum M,  Tychon B (2012). Studying interactions between climate variability and vegetation dynamic using a phenology based approach. Int J Appl Earth Obs Geoinf, 20(1): 20–32
[26]
Huete A R, Restrepo-Coupe  N, Ratana P,  Didan K,  Saleska S R,  Ichii K,  Panuthai S,  Gamo M (2008). Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and Forest Meteorology, 148(5), pp.748–760.
[27]
Jolly W M, Dobbertin  M, Zimmermann N E,  Reichstein M (2005). Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett, 32(18), 
CrossRef Google scholar
[28]
Kaplan S (2012a). Response of urban and non-urban land cover in a semi-arid ecosystem to summer precipitation variability. J Ariz Nev Acad Sci, 43(2): 77–85
CrossRef Google scholar
[29]
Karnieli A (2003). Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments. Int J Biometeorol, 47(4): 179–187
CrossRef Google scholar
[30]
Keshavarz M, Karami  E, Vanclay F (2013). The social experience of drought in rural iran. Land Use Policy, 30(1): 120–129
CrossRef Google scholar
[31]
Liang T, Feng  Q, Yu H,  Huang X,  Lin H, An  S, Ren J (2012). Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland science, 58(4): 208–220
[32]
Liu S, Gong  P (2012). Change of surface cover greenness in China between 2000 and 2010. Chin Sci Bull, 57(22): 2835–2845
CrossRef Google scholar
[33]
Ma M, Frank  V (2006). Interannual variability of vegetation cover in the chinese heihe river basin and its relation to meteorological parameters. Int J Remote Sens, 27(16): 3473–3486
CrossRef Google scholar
[34]
Mu Q, Zhao  M, Kimball J S,  McDowell N G,  Running S W (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1): 83–98
[35]
NALCMS (2005). North American Land Cover at 250 m spatial resolution. Produced by Natural Resources Canada/Canadian Center for Remote Sensing (NRCan/CCRS), United States Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Comisión Nacional Forestal CONAFOR). https://landcover.usgs.gov/nalcms.php
[36]
NCAR (2005). The US National Center for Atmospheric Research (NCAR) and the University Corporation for Atmospheric Research (UCAR);"drought's growing reach: national center for atmospheric research study points to global warming as key factor"http://www.ucar.edu/news/releases/2005/drought_research.shtml.
[37]
Nemani R R, Keeling  C D, Hashimoto  H, Jolly W M,  Piper S C,  Tucker C J,  Myneni R B,  Running S W (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563
CrossRef Google scholar
[38]
Nicholson S E,  Farrar T J (1994). The influence of soil type on the relationships between NDVI, precipitation, and soil moisture in semiarid Botswana. I. NDVI response to precipitation. Remote Sens Environ, 50(2): 107–120
CrossRef Google scholar
[39]
Nieto S, Flombaum  P, Garbulsky M F (2015). Can temporal and spatial NDVI predict regional bird-species richness? Global Ecology and Conservation, 3: 729–735
CrossRef Google scholar
[40]
Obasi G O P (1994). WMO’s role in the international decade for natural disaster reduction. Bull Am Meteorol Soc, 75(9): 1655–1661
CrossRef Google scholar
[41]
Ouyang W, Hao  F, Skidmore A K,  Groen T A,  Toxopeus A G,  Wang T (2012). Integration of multi-sensor data to assess grassland dynamics in a Yellow River sub-watershed. Ecol Indic, 18: 163–170
CrossRef Google scholar
[42]
Palmer W C (1968). Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21(4): 156–161
CrossRef Google scholar
[43]
Pape Mş, Peterson  A T, Powell  G V N (2012). Vegetation dynamics and avian seasonal migration: clues from remotely sensed vegetation indices and ecological niche modelling. J Biogeogr, 39(4): 652–664
CrossRef Google scholar
[44]
Peng Y, Gitelson  A A, Sakamoto  T (2013). Remote estimation of gross primary productivity in crops using MODIS 250 m data. Remote Sens Environ, 128: 186–196
CrossRef Google scholar
[45]
Pôças I,  Cunha M,  Pereira L S,  Allen R G (2013). Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int J Appl Earth Obs Geoinf, 21: 159–172
CrossRef Google scholar
[46]
Reynolds J F, Stafford  S D M, Olsson  L (2003). Geographical reviews-global desertification: Do humans cause deserts? Geogr Rev, 93(3): 413
[47]
Ryu Y, Baldocchi  D D, Verfaillie  J, Ma S,  Falk M, Ruiz-Mercado  I, Hehn T,  Sonnentag O (2010). Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agric Meteorol, 150(12): 1597–1606
CrossRef Google scholar
[48]
Shafer B A, Dezman  L E (1982). Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the western snow conference. Vol. 50. Fort Collins, CO: Colorado State University
[49]
Shi J, Jackson  T, Tao J,  Du J, Bindlish  R, Lu L,  Chen K S (2008). Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 112(12): 4285–4300
CrossRef Google scholar
[50]
Sivakumar M, Motha  R, Wilhite D,  Wood D (2010). Agricultural Drought Indices Proceedings of An Expert Meeting 2–4 June 2010, Murcia, Spain. Geneva: World Meteorological Organization, 219
[51]
UNDP/UNSO (1997). Aridity zones and dryland populations: an assessment of population levels in the world’s drylands. New York: Office to Combat Desertification and Drought
[52]
UNESCO (2012). World water development report managing water under uncertainty and risk. The United Nations world water development report 4. World water assessment programme. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/
[53]
Wang J, Rich  P M, Price  K P (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens, 24(11): 2345–2364
CrossRef Google scholar
[54]
Wang Y (2012). Detecting vegetation recovery patterns after hurricanes in south florida using NDVI time series. Open Access Theses. Paper 355
[55]
Weiss J, Gutzler  D S, Coonrod  J E A, Dahm  C N (2004). Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ, 58(2): 249–272
CrossRef Google scholar
[56]
Wessels K J, Prince  S D, Malherbe  J, Small J,  Frost P,  VanZyl D (2007). Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ, 68(2): 271–297
CrossRef Google scholar
[57]
White M A, Nemani  R R (2006). Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens Environ, 104(1): 43–49
CrossRef Google scholar
[58]
Wright C K, de Beurs  K M, Henebry  G M (2012). Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci, 6(2): 177–187
[59]
Yin H, Udelhoven  T, Fensholt R,  Pflugmacher D,  Hostert P (2012). How normalized difference vegetation index (NDVI) trendsfrom advanced very high resolution radiometer (AVHRR) and système probatoire d’observation de la terre vegetation (SPOT VGT) time series differ in agricultural areas: An inner Mongolian case study. Remote Sens, 4(11): 3364–3389
CrossRef Google scholar
[60]
Yuan F, Roy  S S (2007). Analysis of the relationship between NDVI and climate variables in minnesota using geographically weighted regression and spatial interpolation. In American Society for Photogrammetry and Remote Sensing- ASPRS Annual Conference 2007: Identifying Geospatial Solutions, 2: 784–789
[61]
Zhang X, Friedl  M A, Schaaf  C B, Strahler  A H (2004). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol, 10(7): 1133–1145
CrossRef Google scholar

Acknowledgments

This research was supported in part by NASA (Grant No. NNX11AG56G) and NASA MEaSUREs (Grant No. NNX08AT05A) (Kamel Didan, PI) and the NOAA Sectoral Applications Research Program (NA10OAR4310183) (Michael Crimmins, PI). We also thank the three anonymous reviewers and the editor for their valuable and constructive comments.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(5147 KB)

Accesses

Citations

Detail

Sections
Recommended

/