Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley
Vera KIDYAEVA , Sergey CHERNOMORETS , Inna KRYLENKO , Fangqiang WEI , Dmitry PETRAKOV , Pengcheng SU , Hongjuan YANG , Junnan XIONG
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (3) : 579 -591.
Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley
This research is devoted to Tangjiashan Lake, a quake landslide-dammed lake, situated in Sichuan Province, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-dimensional hydrodynamic model of Russia was applied to simulate the process of two flood scenarios: 1, lake dam outbreak, and 2, dam overtopping. An artificial dam outbreak was made after the earthquake to lower the water level of the lake in 2008, which led to a great flood with a maximum water discharge of more than 6400 m3/s. The negative impact of the flood was reduced by a timely evacuation of the population. Flood hazards still remain in the event of new landslides into the lake and lake dam overtopping (Scenario 2), in which case a maximum water discharge at the dam crest would reach 5000 m3/s, placing the population of Shabacun and Shilingzi villages in the zone of flood impact.
Tangjiashan Lake / landslide-dammed lake outburst / hydrodynamic modeling / risk assessment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
EMERCOM (2007). The method for determining of the damage that can affect life and health of persons, property of people and entities as a result of shipping waterworks accident. Approved by the Order of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters and the Ministry of Transport of the Russian Federation on 2 October 2007, No. 528/143. Moscow (in Russian) |
| [18] |
EMERCOM (2003). The method for determining of the damage that can be caused to life and health of persons, property of people and entities as a result of combustive power-producing civil engineering works accidents. Approved by the Order the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters and the Ministry of Energy of the Russian Federation on 29 December 2003, No. 776/508. Moscow (in Russian) |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
The United Nations Office for Disaster Risk Reduction. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |