Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China

Min XI , Fanlong KONG , Yue LI , Fanting KONG

Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (4) : 660 -669.

PDF (433KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (4) : 660 -669. DOI: 10.1007/s11707-017-0633-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China

Author information +
History +
PDF (433KB)

Abstract

Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months (P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76×105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (~90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.

Keywords

DOC / temporal-spatial variation / UV absorbance / export flux / Dagu River

Cite this article

Download citation ▾
Min XI, Fanlong KONG, Yue LI, Fanting KONG. Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China. Front. Earth Sci., 2017, 11(4): 660-669 DOI:10.1007/s11707-017-0633-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai JZhang GZhao QLu QJia JCui BLiu X (2016). Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci Rep6: 34835 

[2]

Clark J MLane S NChapman P JAdamson J K (2008). Link between DOC in near surface peat and stream water in anupland catchment. Sci Total Environ404(2–3): 308–315 

[3]

Guo WXu JWang JWen YZhuo JYan Y (2010). Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis. J Environ Sci (China)22(11): 1728–1734 

[4]

Harrison J ACaraco NSeitzinger S P (2005). Global patterns and sources of dissolved organic matter to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles19(4): 2488–2501

[5]

Hartmann JJansen NDurr H HKempe SKöhler P (2009). Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions? Global Planet Change69(4): 185–194 

[6]

Hedges J IKeil R GBenner R (1997). What happens to terrestrial organic matter in the ocean? Org Geochem27(5–6): 195–212 

[7]

Jiang B (2007). Water quality evolvement and forecasting of the well-field at the middle-low reach of Dagu River. Dissertation for Master Degree. Qingdao University, 1–3

[8]

Kong FXi MLu XJiang MLi Y (2013). Spatial and temporal variation of dissolved organic carbon in soils of annular wetlands in Sanjiang Plain, China. Acta Pedologica Sinica50(7): 847–852

[9]

Li L LJiang TYan J LGuo NWei S QWang D YGao JZhao Z (2014). Ultraviolet-Visible (UV-Vis) spectral characteristics of Dissolved Organic Matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir Areas. Environ Sci35(3): 933–941

[10]

Li S FYu Y CHe S (2002). Summary of research on dissolved organic carbon(DOC). Soil and Environmental Sciences11(4): 422–429

[11]

Li XYuan HLi NSong J (2008). Organic carbon source and burial during the past one hundred years in Jiaozhou Bay, North China. J Environ Sci (China)20(5): 551–557 

[12]

Lin J (2007). The DOC behavior and flux of Changjiang and Zhujiang river estuary. Fujian: Xiamen University,23–46

[13]

Lou X DZhai S QKang BHu L L (2014). Seasonal dynamic characteristics of dissolved organic carbon in Zoige Peatland and its impact factors. Research of Environmental Sciences27(2): 157–163

[14]

Ludwig WProbst J LKempe S (1996). Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles10(1): 23–41

[15]

Martins OProbst J L (1991). Biogeochemistry of major African rivers:carbon and mineral transport. In: Degens E T, Kempe S, Richey J E, eds. Biogeochemistry of Major World Rivers. SCOPE Report 42, Wiley, 127–155

[16]

Meybeck M (1993). Riverine transport of atmospheric carbon sources, global typology and budget. Water Air Soil Pollut70(1–4): 443–463

[17]

Mitsch W JGosselink J G (2007). Wetlands (4th ed). New York: John Wiley & sons, Inc., 582

[18]

Moody C SWorrall FEvans C DJones T G (2013). The rate of loss of dissolved organic carbon (DOC) through a catchment. J Hydrol (Amst)492: 139–150 

[19]

Moore T R (1987). An assessment of a simple spectrophotometric method for the determination of dissolved organic carbon in freshwaters. N Z J Mar Freshw Res21(4): 585–589

[20]

Maie NSekiguchi SWatanabe ATsutsuki KYamashita YMelling LCawley K MShima EJaffé R (2014). Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland influenced coastal rivers. J Sea Res91: 58–69 

[21]

Patel NMounier SGuyot J LBenamou CBenaim J Y (1999). Fluxes of dissolved and colloidal organic carbon, along the Purus and Amazonas rivers (Brazil). Sci Total Environ229(1–2): 53–64

[22]

Peterson BFry BHullar MSaupe SWright R (1994). The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries17(1): 111–121

[23]

Ran LLu X XSun HHan JLi RZhang J (2013). Spatial and seasonal variability of organic carbon transport in the Yellow River, China. J Hydrol (Amst)498: 76–88 

[24]

Schelker JÖhman KLöfgren SLaudon H (2014). Scaling of increased dissolved organic carbon inputs by forest clear-cutting – What arrives downstream? J Hydrol (Amst)508: 299–306 

[25]

Spitzy ALeenheer J (1990). Dissolved organic carbon in rivers. In: Degens E T, Kempe S, Richey J E, eds. Scope (Scientific Committee on Problems of the Environment), No 42, Biogeochemistry of Major World Rivers. Chichester: Wiley,213–232

[26]

Tao SLiang TXu SDi W (1997). Temporal and spatial variation of dissolved organic carbon content and its flux in yichun river. Acta Geogr Sin52(3): 254–261

[27]

Tian Y QWang DChen R FHuang W (2012). Using modeled runoff to study DOC dynamics in stream and river flow: a case study of an urban watershed southeast of Boston, Massachusetts. Ecol Eng42: 212−222 

[28]

Wang CGuo WGuo ZWei JZhang BMa Z (2013). Characterization of dissolved organic matter in groundwater from the coastal Dagu River watershed, China using fluorescence excitation-emission matrix spectroscopy. Spectroscopy and Spectral Analysis33(9): 2460–2465

[29]

Wilson LWilson JHolden JJohnstone IArmstrong AMorris M (2011). Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci Total Environ409(11): 2010–2018

[30]

Worrall FDavies HBhogal ALilly AEvans MTurner KBurt TBarraclough DSmith PMerrington G (2012). The flux of DOC from the UK Predicting the role of soils, land use and net watershed losses. J Hydrol (Amst)448-449: 149–160

[31]

Xi MKong FLyu XJiang MLi Y (2015). Spatial variation of dissolved organic carbon in soils of riparian wetlands and responses to hydro-geomorphologic changes in Sanjiang Plain, China. Chin Geogr Sci25(2): 174–183

[32]

Xi MLu XLi YKong F (2007). Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain, Northeast China. J Environ Sci (China)19(9): 1074–1078

[33]

Yin XLyu XLiu XXue Z (2015). Influence of land use change on dissolved organic carbon export in Naoli River watershed, Northeast China. Chinese Journal of Applied Ecology26(12): 3788–3794

[34]

Zhang Y L (2008). The response of transport characteristics of riverine organic carbon to regional climate. Earth and Environment36(4): 348–355

[35]

Zhao KQiao LShi JHe SLi GYin P (2015a). Evolution of sedimentary dynamic environment in the western Jiaozhou Bay, Qingdao, China in the last 30 years. Estuar Coast Shelf Sci163: 244–253

[36]

Zhao QBai JLiu PGao HWang J (2015b). Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands. CLEAN-Soil, Air, Water43(3): 441–445 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (433KB)

1008

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/