Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ~1.3 Ma, Shaanxi, northwestern China
Changdok WON, Hanlie HONG, Feng CHENG, Qian FANG, Chaowen WANG, Lulu ZHAO, Gordon Jock CHURCHMAN
Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ~1.3 Ma, Shaanxi, northwestern China
To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%–83%. The content of chlorite ranges from 5%–22%, and the content of kaolinite ranges from 5%–19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0–8%. The Kübler index of illite (IC) ranges from 0.255°–0.491°, and the illite chemical index (ICI) ranges from 0.294–0.394. The CIA values of the loess-palaeosols are 61.9–69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508–0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.
clay minerals / weathering / palaeoclimate / Luochuan / loess-palaeosols
[1] |
Ahmad I, Chandra R (2013). Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci, 66: 73–89
CrossRef
Google scholar
|
[2] |
Andreola F, Castellini E, Manfredini T, Romagnoli M (2004). The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J Eur Ceram Soc, 24(7): 2113–2124
CrossRef
Google scholar
|
[3] |
Biscaye P E (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76(7): 803–832
CrossRef
Google scholar
|
[4] |
Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int, 240(1‒2): 12–21
CrossRef
Google scholar
|
[5] |
Buggle B, Hambach U, Muller K, Zoller L, Markovic S B, Glaser B (2014). Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena, 117: 4–22
CrossRef
Google scholar
|
[6] |
Burt R (2004). Soil survey laboratory methods manual. Soil Survey Investigations Report, 42: 735
|
[7] |
Chen J, An Z, Liu L, Li J, Yang J, Chen Y (2001). Variation of dust chemical composition in Loess Plateau and chemical weathering of Asia inland after 2.5 Ma B.P. Sci China Earth Sci, 31(2): 136–145
|
[8] |
Chen L, Zhang L, Wang H, Zhou L, Chen J, Yuan B (2004). Illite of ambigenous type in Luochuan Loess Section. Chin Sci Bull, 49(23): 2449–2454 (in Chinese)
|
[9] |
Ehrmann W (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on palaeoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 139(3‒4): 213–231
CrossRef
Google scholar
|
[10] |
Gingele F X, De Deckker P, Hillenbrand C D (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia: source and transport by ocean currents. Deep-sea Geology, 179(3‒4): 135–146
|
[11] |
Hallam A, Grose J A, Ruffell A H (1991). Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatol Palaeoecol, 81(3‒4): 173–187
CrossRef
Google scholar
|
[12] |
Hong H L (2010). A review on palaeoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1–8 (in Chinese)
|
[13] |
Hong H L, Du D, Li R, Churchman J G, Yin K, Wang C (2012a). Mixed-layer clay minerals in the Xuancheng red clay sediments, Xuancheng, Anhui Province. Earth Science-Journal of China University of Geosciences, 37(3): 424–432 (in Chinese)
|
[14] |
Hong H L, Li Z, Xue H J, Zhu Y H, Zhang K X, Xiang S Y (2007). Oligocene clay mineralogy of the Linxia basin: evidence of palaeoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau. Clays Clay Miner, 55(5): 491–505
CrossRef
Google scholar
|
[15] |
Hong H L, Wang C, Zheng K, Zhang K, Yin K, Li Z (2012b). Clay mineralogy of the Zhada sediments: evidence for climatic and tectonic evolution since ~9 Ma in Zhada, Southwestern Tibet. Clays Clay Miner, 60(3): 240–253
CrossRef
Google scholar
|
[16] |
Hong H L, Zhang N, Li Z, Xue H, Xia W, Yu N (2008). Clay mineralogy across the P-T boundary of the Xiakou section, China: evidence of clay provenance and environment. Clays Clay Miner, 56(2): 131–143
CrossRef
Google scholar
|
[17] |
Hu P, Liu Q, Torrent J, Barron V, Jin C (2013). Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis. Earth Planet Sci Lett, 369‒370: 271–283
CrossRef
Google scholar
|
[18] |
Jaramillo S S, Mccarthy P J, Trainor T P, Fowell S J, Fiorillo A R (2015). Origin of clay minerals in alluvial palaeosols, Prince Creek formation, North slope, Alaska U.S.A: influence of volcanic ash on pedogenesis in the late Cretaceous Arctic. J Sediment Res, 85(2): 192–208
CrossRef
Google scholar
|
[19] |
Ji J, Chen J, Liu L, Lu H (1999). Chemical weathering and magnetic susceptibility increase of chlorite in Luochuan loess. Prog Nat Sci, 9(7): 619–623 (in Chinese)
|
[20] |
Ji J, Chen J, Lu H (1998). Transmission electron microscopy evidence of illite origin in Luochuan loess, Shaanxi. Chin Sci Bull, 43(19): 2095–2098 (inChinese)
|
[21] |
Ji J, Chen J, Wang H (1997). Crystallinity of illite from the Luochuan Loess-Palaeosol sequence, Shaanxi Province. Geological Review, 43(2): 181–185 (in Chinese)
|
[22] |
Keller W D (1970). Environmental aspects of clay minerals. J Sediment Petrol, 40(3): 788–854
|
[23] |
Kisch H J (1991). Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol, 9(6): 665–670
CrossRef
Google scholar
|
[24] |
Li Y, Song Y, Chen X, Li J, Mamadjanov Y, Aminov J (2016). Geochemical composition of Tajikistan loess and its provenance implications. Palaeogeogr Palaeoclimatol Palaeoecol, 446: 186–194
CrossRef
Google scholar
|
[25] |
Lu H, An Z, Liu H, Yang W (1998). Periodicity of east Asian winter and summer monsoon variation during the past 2500 ka recorded by loess deposits at Luochuan on the central Chinese loess plateau. Geological Review, 44(5): 553–558 (in Chinese)
|
[26] |
Lu S, Wang S, Chen Y (2015). Palaeopedogenesis of red palaeosols in Yunnan Plateau, southwestern China: pedogenical, geochemical and mineralogical evidences and palaeoenvironmental implication. Palaeogeogr Palaeoclimatol Palaeoecol, 420: 35–48
CrossRef
Google scholar
|
[27] |
Lu Y, Sun J, Li P (2008). Predicting palaeoclimate since 140 Ma B.P. by experiment of carbon isotope in loess. Ganhanqu Ziyuan Yu Huanjing, 22(1): 60–63 (in Chinese)
|
[28] |
Meunier A, Caner L, Hubert F, El Albani A, Prét D (2013). The weathering intensity Scale(WIS): an alternative approach of the chemical index of alteration (CIA). Am J Sci, 313(2): 113–143
CrossRef
Google scholar
|
[29] |
Nesbitt H W, Young G M (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715–717
CrossRef
Google scholar
|
[30] |
Nieto F, Ortega-Huertas M, Peacor D R, Arostegui J (1996). Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner, 44(3): 304–323
CrossRef
Google scholar
|
[31] |
Perederij V I (2001). Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine. Quat Int, 76‒77: 113–121
CrossRef
Google scholar
|
[32] |
Petschick R, Kuhn G, Gingele F (1996). Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Deep-sea Geology, 130: 203–229
|
[33] |
Rao W, Li X, Gao Z, Luo T (2004). Distribution of fixed-NH4+-N in Luochuan loess section. J Desert Res, 24(6): 685–688 (in Chinese)
|
[34] |
Rateev M A, Gorbunova Z N, Lisitzyn A P, Nosov G L (1969). The distribution of clay minerals in the oceans. Sedimentology, 13(1‒2): 21–43
CrossRef
Google scholar
|
[35] |
Schatz A, Scholten T, Kühn P (2015). Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence. Palaeogeogr Palaeoclimatol Palaeoecol, 426: 170–182
CrossRef
Google scholar
|
[36] |
Singer A (1984). The Palaeoclimatic interpretation of clay minerals in sediment—A review. Earth Sci Rev, 21(4): 251–293
CrossRef
Google scholar
|
[37] |
Sun J, Liu T (2002). Pedostratigraphic subdivision of the loess-palaeosol sequences at Luochuan and a new interpretation on the palaeoenvironmental significance of L9 And L15. Quaternary Sciences, 22(5): 406–412 (in Chinese)
|
[38] |
Sun Y, Kutzbach J, An Z, Clemens S, Liu Z, Liu W, Liu X, Shi Z, Zheng W, Liang L, Yan Y, Li Y (2015). Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142
CrossRef
Google scholar
|
[39] |
Sun Z, Owens P R, Han C, Chen H, Wang X, Wang Q (2016). A quantitative reconstruction of a loess–paleosol sequence focused on paleosol genesis: an example from a section at Chaoyang, China. Geoderma, 266: 25–39
CrossRef
Google scholar
|
[40] |
Terhorst B, Kuhn P, Damm B, Hambach U, Meyer-Heintze S, Sedov S (2014). Paleoenvironmental fluctuations as recorded in the loess-paleosol sequence of the Upper Paleolithic site Krems-Wachtberg. Quat Int, 351: 67–82
CrossRef
Google scholar
|
[41] |
Trindade M J, Rocha F, Dias M I, Prudêncio M I (2013). Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner, 48(1): 59–83
CrossRef
Google scholar
|
[42] |
Wang H, Zhou J (1998). On the indices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395–405 (in Chinese)
|
[43] |
Xie Q, Chen T, Sun Y, Li X, Xu X (2008). Composition of ferric oxides in the Luochuan loess-red clay sequences on China’s loess plateau and its palaeoclimatic implications. Acta Mineralogica Sinica, 28(4): 389–396 (in Chinese)
|
[44] |
Xu Y, Hong H, He Y (2010). Clay mineralogy and its geological significance of sediments in the foreland basin of West Kunlun Mountains. Acta Sedimentologica Sinica, 28(4): 659–668 (in Chinese)
|
[45] |
Yang H, Pancost R D, Tang C, Ding W, Dang X, Xie S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79
CrossRef
Google scholar
|
[46] |
Yang M, Zhang H, Lei G, Zhang W, Fan H, Chang F, Niu J, Chen Y (2006). Biomarkers in weakly developed palaeosol (L1SS1) in the Luochuan loess section and reconstructed palaeovegetation-environment during the interstade of the last glaciation. Quaternary Sciences, 26(6): 976–984 (in Chinese)
|
[47] |
Yuan B, Ba T, Cui J, Yin Q (1987). The relationship between gully development and climatic changes in the loess Yuan region: examples from Luochuan, Shaanxi Province. Acta Geogr Sin, 42(4): 328–337 (in Chinese)
|
[48] |
Zhang H, Yang M, Zhang W, Lei G, Chang F, Pu Y, Fan H (2007). Diversification of biomarkers and vegetation of S4 palaeosol and the adjacency loess in the Luochuan loess section. Sci China Earth Sci, 37(12): 1634–1642 (in Chinese)
|
[49] |
Zheng H, Gu X, Han J, Deng B (1985). Clay minerals in loess of China and their tendency in loess section. Quaternary Sciences, 6(1): 158–165 (in Chinese)
|
/
〈 | 〉 |