Passive Super-Low Frequency electromagnetic prospecting technique

Nan WANG , Shanshan ZHAO , Jian HUI , Qiming QIN

Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (2) : 248 -267.

PDF (2740KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (2) : 248 -267. DOI: 10.1007/s11707-017-0597-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Passive Super-Low Frequency electromagnetic prospecting technique

Author information +
History +
PDF (2740KB)

Abstract

The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.

Keywords

Super-Low Frequency (SLF) / three-dimensional modeling / frequency-depth transformation / geothermal exploration / coalbed methane (CBM) / electromagnetic radiation (EMR)

Cite this article

Download citation ▾
Nan WANG, Shanshan ZHAO, Jian HUI, Qiming QIN. Passive Super-Low Frequency electromagnetic prospecting technique. Front. Earth Sci., 2017, 11(2): 248-267 DOI:10.1007/s11707-017-0597-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aprea CBooker JSmith J (1997). The forward problem of electromagnetic induction: accurate finite-difference approximations for two-dimensional discrete boundaries with arbitrary geometry. Geophys J Int129(1): 29–40

[2]

Atzberger C (2013). Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens5(2): 949–981

[3]

Avdeev D B (2005). Three-dimensional electromagnetic modelling and inversion from theory to application. Surv Geophys26(6): 767–799

[4]

Berdichevsky M NDmitriev V IZhdanov M S (2010). Possibilities and problems of modern magnetotellurics. Izv Phys Solid Earth46(8): 648–654 doi:10.1134/S1069351310080021

[5]

Börner R U (2010). Numerical modelling in geo-electromagnetics: advances and challenges. Surv Geophys31(2): 225–245 doi:10.1007/s10712-009-9087-x

[6]

Congalton RGu JYadav KThenkabail POzdogan M (2014). Global land cover mapping: a review and uncertainty analysis. Remote Sens6(12): 12070–12093 doi:10.3390/rs61212070

[7]

Cui R BQin Q MLi B SWang Q P (2009). Design and development of passive super low frequency electromagnetic data processing software. In: 2009 IEEE International Geoscience And Remote Sensing Symposium, Vols 1-5 IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, New York, NY 10017 USA: IEEE), 627–630

[8]

Frid VRabinovitch ABahat D (2003). Fracture induced electromagnetic radiation. J Phys D Appl Phys36(13): 1620–1628

[9]

Frid VVozoff K (2005). Electromagnetic radiation induced by mining rock failure. Int J Coal Geol64(1‒2): 57–65

[10]

Gomez-Treviño E (1996). Approximate depth averages of electrical conductivity from surface magnetotelluric data. Geophys J Int127(3): 762–772 doi:10.1111/j.1365-246X.1996.tb04055.x

[11]

Greiling R OObermeyer H (2010). Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics. J Geol Soc India75(1): 278–288

[12]

He X QNie B SChen W XWang E YDou L MWang Y HLiu M JHani M (2012). Research progress on electromagnetic radiation in gas-containing coal and rock fracture and its applications. Saf Sci50(4): 728–735

[13]

Heise WCaldwell T GBibby H MBannister S C (2008). Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int173(2): 740–750

[14]

Huang H PWon I J (2003). Detecting metal objects in magnetic environments using a broadband electromagnetic method. Geophysics68(6): 1877–1887 doi:10.1190/1.1635040

[15]

Liu HSang SWang GLi MXu HLiu SLi JRen BZhao ZXie Y (2014). Block scale investigation on gas content of coalbed methane reservoirs in southern Qinshui basin with statistical model and visual map. J Petrol Sci Eng114: 1–14

[16]

Liu M JHe X Q (2001). Electromagnetic response of outburst-prone coal. Int J Coal Geol45(2-3): 155–162

[17]

Mackie R LMadden T RWannamaker P E (1993). Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions. Geophysics58(2): 215–226

[18]

Meju M A (2002). Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surv Geophys23(2‒3): 133–206 doi:10.1023/A:1015052419222

[19]

Melesse A MWeng QThenkabail P SSenay G B (2007). Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors (Basel Switzerland)7(12): 3209–3241

[20]

Moore T A (2012). Coalbed methane: a review. Int J Coal Geol101: 36–81

[21]

Ouchi K (2013). Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens5(2): 716–807

[22]

Qin  Q MLi  B SCui  R BJiang  H BWang  Q PZhang  Z X (2010). Analysis of factors affecting natural source SLF electromagnetic exploration at geothermal wells. Chinese Journal of Geophysics53(3): 685–694doi: 10.3969/j.issn.0001-5733.2010.03.023(in Chinese)

[23]

Rodríguez JEsparza F JGómez-Treviño E (2010). 2-D Niblett-Bostick magnetotelluric inversion. Geologica Acta8(1): 15–30 doi: 10.1344/105.000001513

[24]

Schmucker U (1987). Substitute conductors for electromagnetic response estimates. Pure Appl Geophys125(2‒3): 341–367

[25]

Shan ZQi QNan WLi CYan BCheng Y (2014). Analysis and design of passive super low frequency detection system. In: 2014 IEEE Geoscience and Remote Sensing Symposium. (IGARSS). Proceedings (Piscataway, NJ, USA: IEEE), 5056–5059

[26]

Siripunvaraporn WEgbert GLenbury Y (2002). Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations. Earth Planets Space54(6): 721–725 doi:10.1186/BF03351724

[27]

Slonecker TFisher G BAiello D PHaack B (2010). Visible and infrared remote imaging of hazardous waste: a review. Remote Sens2(11): 2474–2508

[28]

Spichak VManzella A (2009). Electromagnetic sounding of geothermal zones. J Appl Geophys68(4): 459–478

[29]

Su X BLin XLiu SZhao MSong Y (2005). Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China. Int J Coal Geol62(4): 197–210

[30]

van Genderen J L (2011). Advances in environmental remote sensing: sensors, algorithms, and applications. Int J Digit Earth4(5): 446–447

[31]

Wang E YHe X QLiu XLi ZWang CXiao D (2011). A non-contact mine pressure evaluation method by electromagnetic radiation. J Appl Geophys75(2): 338–344

[32]

Wang E YJia H LSong D ZLi NQian W H (2014). Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines. Int J Rock Mech Min Sci70: 16–25

[33]

Wang NQin Q MChen LBai Y BZhao S SZhang C Y (2014a). Dynamic monitoring of coalbed methane reservoirs using Super-Low Frequency electromagnetic prospecting. Int J Coal Geol127: 24–41

[34]

Wang NQin Q MChen LBai Y BZhao S SZhang C Y (2014b). Passive Super-Low Frequency Remote Sensing Technique For Monitoring Coal-Bed Methane Reservoirs. In: 2014 IEEE International Geoscience And Remote Sensing Symposium (IGARSS) IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE), 867–870

[35]

Wang NQin Q MXie CChen LBai Y B (2013). Coal-Bed Methane Reservoir Identification Using The Natural Source Super-Low Frequency Remote Sensing. In: 2013 IEEE International Geoscience And Remote Sensing Symposium (IGARSS) IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE), 4022–4025

[36]

Yavuz M ETeixeira F L (2009). Ultrawideband microwave sensing and imaging using time-reversal techniques: a review. Remote Sens1(3): 466–495

[37]

Zhdanov M SVarentsov I MWeaver J TGolubev N GKrylov V A (1997). Methods for modelling electromagnetic fields Results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction. J Appl Geophys37(3‒4): 133–271 doi:10.1016/S0926-9851(97)00013-X

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2740KB)

989

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/