Effect of snow on mountain river regimes: an example from the Pyrenees

Alba SANMIGUEL-VALLELADO, Enrique MORÁN-TEJEDA, Esteban ALONSO-GONZÁLEZ, Juan Ignacio LÓPEZ-MORENO

PDF(2004 KB)
PDF(2004 KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (3) : 515-530. DOI: 10.1007/s11707-016-0630-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of snow on mountain river regimes: an example from the Pyrenees

Author information +
History +

Abstract

The purpose of this study was to characterize mountain river regimes in the Spanish Pyrenees and to assess the importance of snow accumulation and snowmelt on the timing of river flows. Daily streamflow data from 9 gauging stations in the Pyrenees were used to characterize river regimes. These data were analyzed by hydrological indices, with a focus on periods when snow accumulation and snowmelt occurred. These results were combined with data on Snow Water Equivalent (SWE) (from measurements of depth and density of snow in the main river basins and also simulated by a process-based hydrological model), snowmelting (simulated by a process-based hydrological model), precipitation (from observations), and temperature (from observations). Longitude and elevation gradients in the Pyrenees explain the transition of river regimes from those that mostly had low nival signals (in the west and at low elevations) to those that mostly had high nival signals (low winter runoff and late spring peakflow, in the east and at high elevations). Although trend analyses indicated no statistically significant changes, there was a trend of decreased nival signal over time in most of the analyzed rivers. Our results also demonstrated that snow processes cannot explain all of the interannual variability of river regimes, because the temporal distribution of liquid precipitation and temperature play key roles in hydrography.

Graphical abstract

Keywords

river regime / precipitation / snow indices / Spanish Pyrenees / streamflow

Cite this article

Download citation ▾
Alba SANMIGUEL-VALLELADO, Enrique MORÁN-TEJEDA, Esteban ALONSO-GONZÁLEZ, Juan Ignacio LÓPEZ-MORENO. Effect of snow on mountain river regimes: an example from the Pyrenees. Front. Earth Sci., 2017, 11(3): 515‒530 https://doi.org/10.1007/s11707-016-0630-z

References

[1]
Adam J C, Hamlet A F, Lettenmaier D P (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Processes, 23(7): 962–972
CrossRef Google scholar
[2]
Auble G T, Friedman J M, Scott M L (1994). Relating riparian vegetation to present and future streamflows. Ecol Appl, 4(3): 544–554
CrossRef Google scholar
[3]
Bard A, Renard B, Lang M (2010). Observed trends in the hydrologic regime of Alpine catchments. In: EGU General Assembly Conference Abstracts, vol. 12, p. 11627
[4]
Barnett T P, Adam J C, Lettenmaier D P (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303–309
CrossRef Google scholar
[5]
Beguería S, López-Moreno J I, Lorente A, Seeger M, García-Ruiz J M (2003). Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio, 32(4): 283–286
CrossRef Google scholar
[6]
Bejarano M D, Marchamalo M, de Jalón D G, del Tánago M G (2010). Flow regime patterns and their controlling factors in the Ebro basin (Spain). J Hydrol (Amst), 385(1): 323–335
CrossRef Google scholar
[7]
Beniston M (2012). Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang, 3(4): 349–358
CrossRef Google scholar
[8]
Burn D H (2008). Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J Hydrol (Amst), 352(1-2): 225–238
CrossRef Google scholar
[9]
Burn D H, Hag Elnur M A H (2002). Detection of hydrologic trends and variability. J Hydrol (Amst), 255(1): 107–122
CrossRef Google scholar
[10]
Camarasa-Belmonte A M, Soriano J (2014). Empirical study of extreme rainfall intensity in a semi-arid environment at different time scale. J Arid Environ, 100–101: 63–71
CrossRef Google scholar
[11]
Cayan D R (1996). Interannual climate variability and snowpack in the western United States. J Clim, 9(5): 928–948
CrossRef Google scholar
[12]
Cayan D R, Dettinger M D, Kammerdiener S A, Caprio J M, Peterson D H (2001). Changes in the onset of spring in the Western United States. Bull Am Meteorol Soc, 82(3): 399–415
CrossRef Google scholar
[13]
Chauvin G M, Flerchinger G N, Link T E, Marks D, Winstral A H, Seyfried M S (2011). Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrolology, 400(1–2): 133–143
CrossRef Google scholar
[14]
Chen Z, Grasby S E (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrolology, 365(1–2): 122–133
CrossRef Google scholar
[15]
Clow D W (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306
CrossRef Google scholar
[16]
De Luis M, Brunetti M, Gonzalez-Hidalgo J C, Longares L A, Martin-Vide J (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global Planet Change, 74(1): 27–33
CrossRef Google scholar
[17]
Dedieu J P, Lessard-Fontaine A, Ravazzani G, Cremonese E, Shalpykova G, Beniston M (2014). Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci Total Environ, 493: 1267–1279
CrossRef Google scholar
[18]
Del Barrio G, Creus J, Puigdefábregas J (1990). Thermal seasonality of the high mountains belt of the Pyrenees. Mt Res Dev, 10(3): 227–233
CrossRef Google scholar
[19]
Foy C, Arabi M, Yen H, Gironás J, Bailey R T (2015). Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. J Hydrol Eng, 20(10): 04015017
CrossRef Google scholar
[20]
Gaetani M, Baldi M, Dalu G A, Maracchi G (2011). Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci, 11(9): 2469–2481
CrossRef Google scholar
[21]
García-Ruiz J M, López-Moreno J I, Vicente-Serrano S M, Lasanta–Martínez T, Beguería S (2011). Mediterranean water resources in a global change scenario. Earth Sci Rev, 105(3-4): 121–139
CrossRef Google scholar
[22]
García-Ruiz J M, Puigdefábregas T J, Creus-Novau J (1985). Los recursos hídricos superficiales del Alto Aragón. Huesca: Instituto de Estudios Altoaragoneses
[23]
Godsey S E, Kirchner J W, Tague C L (2014). Effects of changes in winter snowpacks on summer low flows: case studies in the sierra nevada, California, USA. Hydrol Processes, 28(19): 5048–5064
CrossRef Google scholar
[24]
Herrera S, Gutiérrez J M, Ancell R, Pons M R, Frías M D, Fernández J (2012). Development and analysis of a 50‐year high‐resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol, 32(1): 74–85
CrossRef Google scholar
[25]
Hinch S G, Healey M C, Diewert R E, Henderson M A, Thomson K A, Hourston R, Juanes F (1995). Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can J Fish Aquat Sci, 52(12): 2651–2659
CrossRef Google scholar
[26]
Irannezhad M, Ronkanen A K, Kløve B (2015). Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg Sci Technol, 118: 14–29
CrossRef Google scholar
[27]
Jolliffe I (2002). Principal Component Analysis and Factor Analysis. Principal Component Analysis. Springer Series in Statistics, 150–166
CrossRef Google scholar
[28]
Kaiser H F (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3): 187–200
CrossRef Google scholar
[29]
Kaiser H F (1974). An index of factorial simplicity. Psychometrika, 39(1): 31–36
CrossRef Google scholar
[30]
Kendall M (1975). Multivariate Analysis. London: Charles Griffin
[31]
Kormann C, Francke T, Bronstert A (2015). Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. Journal of Water and Climate Change, 6(1): 124–143
CrossRef Google scholar
[32]
Kormos P R, Marks D, McNamara J P, Marshall H P, Winstral A, Flores A N (2014). Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. Journal of Hydrolology, 519(PA): 190–204,
CrossRef Google scholar
[33]
Kruskal W H, Wallis W A (1952). Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 47(260): 583–621
CrossRef Google scholar
[34]
Lana-Renault N, Alvera B, García-Ruiz J M (2011). Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment, ‎. Arct Antarct Alp Res, 43(2): 213–222
CrossRef Google scholar
[35]
López R, Justribó C (2010). The hydrological significance of mountains: a regional case study, the Ebro River basin, northeast Iberian Peninsula. Hydrol Sci J, 55(2): 223–233
CrossRef Google scholar
[36]
López-Moreno J I (2005). Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res, 37(2): 253–260
CrossRef Google scholar
[37]
López-Moreno J I, Beniston M, García-Ruiz J M (2008). Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Global Planet Change, 61(3): 300–312
CrossRef Google scholar
[38]
López-Moreno J I, Fassnacht S R, Beguería S, Latron J (2011b). Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 5(3): 617–629
CrossRef Google scholar
[39]
López-Moreno J I, Fassnacht S R, Heath J T, Musselman K N, Revuelto J, Latron J, Morán-Tejeda E, Jonas T (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent. Adv Water Resour, 55: 40–52
CrossRef Google scholar
[40]
López-Moreno J I, García-Ruiz J M (2004). Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J, 49(5) doi: 10.1623/hysj.49.5.787.55135
[41]
López-Moreno J I, Goyette S, Beniston M (2009). Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol (Amst), 374(3): 384–396
CrossRef Google scholar
[42]
López-Moreno J I, Vicente-Serrano S M, Morán-Tejeda E, Zabalza J, Lorenzo-Lacruz J, García-Ruiz J M (2011a). Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci, 15(1): 311–322
CrossRef Google scholar
[43]
López-Moreno J I, Revuelto J, Rico I, Chueca-Cía J, Julián A, Serreta A, Serrano E, Vicente-Serrano S M, Azorín-Molina C, Alonso-González E, García-Ruiz J M (2016). Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere, 10(2): 681–694
CrossRef Google scholar
[44]
López-Moreno J I, Vicente-Serrano S M, Zabalza J, Revuelto J, Gilaberte M, Azorín-Molina C, Morán-Tejeda E, García-Ruiz J M, Tague C (2014). Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. Pirineos, 169(0): e004
CrossRef Google scholar
[45]
Lute A C, Abatzoglou J T, Hegewisch K C (2015). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res, 51(2): 960–972
CrossRef Google scholar
[46]
Mann H B (1945). Nonparametric tests against trend. Econometrica, 13(3): 245–259
CrossRef Google scholar
[47]
Mann H B, Whitney D R (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat, 18(1): 50–60
CrossRef Google scholar
[48]
Marti R, Gascoin S, Houet T, Ribière O, Laffly D, Condom T, Monnier S, Schmutz M, Camerlynck C, Tihay J P, Soubeyroux J M, René P (2015). Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere, 9(5): 1773–1795
CrossRef Google scholar
[49]
Masiokas M H, Villalba R, Luckman B H, Mauget S (2010). Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J Hydrometeorol, 11(3): 822–831
CrossRef Google scholar
[50]
Moore J N, Harper J T, Greenwood M C (2007). Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys Res Lett, 34(16) doi: 10.1029/2007GL031022
[51]
Morán-Tejeda E, Herrera S, López-Moreno J I, Revuelto J, Lehmann A, Beniston M (2013). Evolution and frequency (1970-2007) of combined temperature-precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg Environ Change, 13(4): 873–885
CrossRef Google scholar
[52]
Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Ceballos-Barbancho A, Zabalza J, Vicente-Serrano S M (2012). Reservoir Management in the Duero Basin (Spain): impact on River Regimes and the Response to Environmental Change. Water Resour Manage, 26(8): 2125–2146
CrossRef Google scholar
[53]
Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Rahman K, Beniston M (2014). Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol (Amst), 517: 1114–1127
CrossRef Google scholar
[54]
Morán-Tejeda E, Zabalza J, Rahman K, Gago-Silva A, López-Moreno J I, Vicente-Serrano S, Lehmann A, Tague C L, Beniston M (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology, 8(8): 1396–1416
CrossRef Google scholar
[55]
Peña J, Lozano M (2004). Las unidades del relieve aragonés, Geografía Física de Aragón, Aspectos Generales Y Temáticos. Zaragoza: Universidad de Zaragoza
[56]
Poff N, Brinson M M, Day J (2002). Aquatic ecosystems and global climate change.Arlington: Pew Center on Global Climate Change
[57]
Pradhanang S M, Frei A, Zion M, Schneiderman E M, Steenhuis T S, Pierson D (2013). Rain-on-snow runoff events in New York. Hydrol Processes, 27(21): 3035–3049
CrossRef Google scholar
[58]
Revuelto-Benedí J, López-Moreno J I, Morán-Tejada E, Fassnacht S R, Vicente-Serrano S M (2012). Variabilidad interanual del manto de nieve en el Pirineo: tendencias observadas y su relación con índices de teleconexión durante el periodo 1985-2011. In: 8° Congreso Internacional sobre Cambio climático, Extremos e Impactos. Salamanca: Asociación Española de Climatología, 613–621
[59]
Richman M B (1986). Rotation of principal components. J Climatol, 6(3): 293–335
CrossRef Google scholar
[60]
Ryberg K R, Akyüz F A, Wiche G J, Lin W (2016). Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol Processes, 30(8): 1208–1218
CrossRef Google scholar
[61]
Sankey T, Donald J, McVay J, Ashley M, O’Donnell F, Lopez S M, Springer A (2015). Multi-scale analysis of snow dynamics at the southern margin of the North American continental snow distribution. Remote Sens Environ, 169: 307–319
CrossRef Google scholar
[62]
Schnorbus M, Werner A, Bennett K (2014). Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol Processes, 28(3): 1170–1189
CrossRef Google scholar
[63]
Singh P, Spitzbart G, Hübl H, Weinmeister H W (1997). Hydrological response of snowpack under rain-on-snow events: a field study. J Hydrol (Amst), 202(1): 1–20
CrossRef Google scholar
[64]
Stewart I T (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Processes, 23(1): 78–94
CrossRef Google scholar
[65]
Stewart I T, Cayan D R, Dettinger M D (2005). Changes toward Earlier Streamflow Timing across Western North America. J Climatol, 18(8): 1136–1155
CrossRef Google scholar
[66]
Tuset J, Vericat D, Batalla R J (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci Total Environ, 540: 114–132
CrossRef Google scholar
[67]
Viviroli D, Dürr H H, Messerli B, Meybeck M, Weingartner R (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res, 43(7): doi: 10.1029/2006WR005653
[68]
Ward J H Jr (1963). Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc, 58(301): 236–244
CrossRef Google scholar
[69]
Whitaker A C, Sugiyama H, Hayakawa K (2008). Effect of snow cover conditions on the hydrologic regime: case study in a pluvial-nival watershed, Japan. J Am Water Resour Assoc, 44(4): 814–828
CrossRef Google scholar
[70]
Wu Z, Huang N E, Long S R, Peng C K (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104(38): 14889–14894
CrossRef Google scholar
[71]
Yamanaka T, Wakiyama Y, Suzuki K (2012). Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrological Research Letters, 6(0): 87–91
CrossRef Google scholar
[72]
Yang D, Zhao Y, Armstrong R, Robinson D (2009). Yukon River streamflow response to seasonal snow cover changes. Hydrol Processes, 23(1): 109–121
CrossRef Google scholar
[73]
Yue S, Pilon P, Cavadias G (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol (Amst), 259(1): 254–271
CrossRef Google scholar

Acknowledgements

This study was funded by the research project CGL2014-52599-P, “Estudio del manto de nieve en la montaña española y su respuesta a la variabilidad y cambio climatico” from the Spanish Ministry of Economy and Competitiveness. The authors thank the ERHIN program for providing the snow data used in this study.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2004 KB)

Accesses

Citations

Detail

Sections
Recommended

/