Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle
Xiang ZOU, Shiyong SUN, Sen LIN, Kexuan SHEN, Faqin DONG, Daoyong TAN, Xiaoqin NIE, Mingxue LIU, Jie WEI
Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle
Calcified coccolithophores, a diverse and widely distributed group of marine microalgae, produce biogenic calcite in the form of coccoliths located on the cell surface. Using batch incubations of the coccolithophoridPleurochrysis carterae, we investigated the responses of this calcification process to iron concentrations by changing the iron supply in the initial culture media from a normal concentration to 1 ppm (parts per million), 5 ppm, and 10 ppm. Time-dependent measurements of cell population, production of inorganic carbon (coccoliths), and organic carbon (organic cellular components) showed that elevated iron supply in the growth medium ofP. carterae stimulates carbon sequestration by increasing growth along enhanced photosynthetic activity and calcification. In addition, the acquired time-dependent UV-Vis and FT-IR spectra revealed that iron fertilization-enhanced coccolith calcification is accompanied by a crystalline phase transition from calcite to aragonite or amorphous phase. Our results suggest that iron concentration has a significant influence on the marine carbon cycle of coccolithophores.
calcification / coccolithophores / iron fertilization / Pleurochrysis carterae
[1] |
Arrigo K R (2005). Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355
CrossRef
Google scholar
|
[2] |
Blain S, Queguiner B, Armand L , Belviso S , Bombled B , Bopp L, Bowie A, Brunet C , Brussaard C , Carlotti F , Christaki U , Corbiere A , Durand I , Ebersbach F , Fuda J L , Garcia N , Gerringa L , Griffiths B , Guigue C , Guillerm C , Jacquet S , Jeandel C , Laan P, Lefevre D, Lo Monaco C , Malits A , Mosseri J , Obernosterer I , Park Y H , Picheral M , Pondaven P , Remenyi T , Sandroni V , Sarthou G , Savoye N , Scouarnec L , Souhaut M , Thuiller D , Timmermans K , Trull T , Uitz J, van Beek P, Veldhuis M , Vincent D , Viollier E , Vong L, Wagener T (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074
CrossRef
Google scholar
|
[3] |
Bowie A R, Maldonado M T, Frew R D, Croot P L, Achterberg E P, Mantoura R F C, Worsfold P J, Law C S, Boyd P W (2001). The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 48(11): 2703–2743
CrossRef
Google scholar
|
[4] |
Boyd P, Ellwood M (2010). The biogeochemical cycle of iron in the ocean. Nat Geosci, 3(10): 675–682
CrossRef
Google scholar
|
[5] |
Chow J S, Lee C, Engel A (2015). The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi. Mar Chem, 175: 5–17
CrossRef
Google scholar
|
[6] |
Guan W C, Gao K S (2010). Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environ Exp Bot, 67(3): 502–508
CrossRef
Google scholar
|
[7] |
Hassler C S, Norman L, Nichols C A M , Clementson L A , Robinson C , Schoemann V , Watson R J , and Doblin M A , (2015). Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Marine Chemistry, 173: 136–147
|
[8] |
Henriksen K, Stipp S L S (2009). Controlling biomineralization: the effect of solution composition on coccolith polysaccharide functionality. Cryst Growth Des, 9(5): 2088–2097
CrossRef
Google scholar
|
[9] |
Jin P, Wang T, Liu N , Dupont S , Beardall J , Boyd P W , Riebesell U , Gao K (2015). Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature communications, 6: 8714
|
[10] |
Langer G, Gussone N, Nehrke G , Riebesell U , Eisenhauer A , Kuhnert H , Rost B, Trimborn S, Thoms S (2006). Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol Oceanogr, 51(1): 310–320
CrossRef
Google scholar
|
[11] |
Li W, Chen W S, Zhou P P, Zhu S L, Yu L J (2013). Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical Engineering Journal, 218: 65–72
|
[12] |
Macrellis H M , Trick C G , Rue E L , Smith G , Bruland K W (2001). Collection and detection of natural iron-binding ligands from seawater. Mar Chem, 76(3): 175–187 doi:10.1016/S0304-4203(01)00061-5
|
[13] |
Müller M, Antia A, LaRoche J (2008). Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnol Oceanogr, 53(2): 506–512
CrossRef
Google scholar
|
[14] |
O’Dea S A , Gibbs S J , Bown P R , Young J R , Poulton A J , Newsam C , Wilson P A (2014). Coccolithophore calcification response to past ocean acidification and climate change. Nat Commun, 5: 5363
|
[15] |
Rickaby R, Schrag D, Zondervan I , Riebesell U (2002), Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochemical Cycles, 16(1): 6-1–6-8
|
[16] |
Rost B, Riebesell U (2004).Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer-Verlag, 99–125
|
[17] |
Shi D, Xu Y, Hopkinson B M , Morel F M M (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327(5966): 676–679
CrossRef
Google scholar
|
[18] |
Sun J, Gu X Y, Feng Y Y, Jin S F, Jiang W S, Jin H Y, Chen J F (2014). Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11(3): 779–806
CrossRef
Google scholar
|
[19] |
Tortell P D, Maldonado M T, Granger J, Price N M (1999). Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol, 29(1): 1–11
CrossRef
Google scholar
|
[20] |
Wang W X, Dei R C (2001). Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Mar Chem, 74(2‒3): 213–226
CrossRef
Google scholar
|
[21] |
Wang Y Y, Yao Q Z, Zhou G T, Fu S Q (2015). Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur J Mineral, 27(6): 717–729
CrossRef
Google scholar
|
[22] |
Xing T, Gao K S, Beardall J (2015). Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes. Photochem Photobiol, 91(2): 343–349
CrossRef
Google scholar
|
[23] |
Xu K, Gao K (2015). Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi. Photochem Photobiol, 91(1): 92–101
CrossRef
Google scholar
|
[24] |
Xu K, Gao K, Villafañe V E , Helbling E W (2011). Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths. Biogeosciences, 8(6): 1441–1452
CrossRef
Google scholar
|
[25] |
Young J R, Andruleit H, Probert I (2009). Coccolith function and morphogenesis: insights from appendage-bearing coccolithophores of the family syracosphaeraceae (Haptophyta). J Phycol, 45(1): 213–226
CrossRef
Google scholar
|
[26] |
Young J R, Davis S A, Bown P R, Mann S (1999). Coccolith ultrastructure and biomineralisation. J Struct Biol, 126(3): 195–215
CrossRef
Google scholar
|
/
〈 | 〉 |