Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

Jiali CHEN, Pengju HU, Xing LI, Yang YANG, Jinming SONG, Xuegang LI, Huamao YUAN, Ning LI, Xiaoxia LÜ

PDF(2165 KB)
PDF(2165 KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 95-107. DOI: 10.1007/s11707-016-0620-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

Author information +
History +

Abstract

The paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (ΔT) between derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

Keywords

iGDGTs / distribution / South China Sea (SCS) / sea surface temperature / water depth

Cite this article

Download citation ▾
Jiali CHEN, Pengju HU, Xing LI, Yang YANG, Jinming SONG, Xuegang LI, Huamao YUAN, Ning LI, Xiaoxia LÜ. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas. Front. Earth Sci., 2018, 12(1): 95‒107 https://doi.org/10.1007/s11707-016-0620-1

References

[1]
Basse A, Zhu  C, Versteegh G J M,  Fischer G,  Hinrichs K,  Mollenhauer G (2014). Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa. Org Geochem, 72: 1–13
CrossRef Google scholar
[2]
De Rosa M, Esposito  E, Gambacorta A,  Nicolaus B,  Bu'Lock J D (1980). Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry, 19(5): 827–831
CrossRef Google scholar
[3]
Francis C A, Roberts  K J, Beman  J M, Santoro  A E, Oakley  B B (2005). Ubiquity and diversity of ammonia oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102(41): 14683–14688
CrossRef Google scholar
[4]
Ge H, Zhang  C, Dang H,  Zhu C, Jia  G (2013). Distribution of tetraether lipids in surface sediments of the northern South China Sea: implications for TEX86 proxies. Geoscience Frontiers, 4(2): 223–229
CrossRef Google scholar
[5]
Gliozzi A, Paoli  G , De RosaM ,  GambacortaA (1983). Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, 735(2): 234–242
CrossRef Google scholar
[6]
Hallam S J, Konstantinidis  K T, Putnam  N, Schleper C,  Watanabe Y,  Sugahara J,  Preston C,  de la Torre J,  Richardson P M,  DeLong E F (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA, 103(48): 18296–18301
CrossRef Google scholar
[7]
Herndl G J, Reinthaler  T, Teira E,  van Aken H,  Veth C, Pernthaler  A, Pernthaler J (2005). Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 71(5): 2303–2309
CrossRef Google scholar
[8]
Hopmans E C, Weijers  J W H, Schefuß  E, Herfort L,  Sinninghe Damsté J S,  Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1‒2): 107–116
CrossRef Google scholar
[9]
Hu A, Jiao  N, Zhang C (2011). Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea. Microb Ecol, 62(3): 549–563
CrossRef Google scholar
[10]
Hu J, Kawamura  H, Hong H S,  Qi Y (2000). Review on the currents in the South China Sea seasonal circulation South China Sea warm current and Kuroshio Intrusion. J Oceanogr, 56(6): 607–624
CrossRef Google scholar
[11]
Huguet C, Hopmans  E C, Febo-Ayala  W, Thompson D H,  Sinninghe Damste' J S,  Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
CrossRef Google scholar
[12]
Jia G, Zhang  J, Chen J,  Peng P, Zhang  C (2012). Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Org Geochem, 50: 68–77
CrossRef Google scholar
[13]
Karner M B, DeLong  E F, Karl  D M (2001). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409(6819): 507–510
CrossRef Google scholar
[14]
Kim J H, Schouten  S, Rodrigo-Gámiz M, Rampen S,  Marino G,  Huguet C,  Helmke P,  Buscai R,  Hopmans E,  Pross J,  Sangiorgi F,  Middelburg J B M,  Sinninghe Damsté J S (2015). Influence of deep-water derived isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea. Geochim Cosmochim Acta, 150: 125–141
CrossRef Google scholar
[15]
Kim J H, van der Meer  J, Schouten S,  Helmke P,  Willmott V,  Sangiorgi FKoç N, Hopmans  E C, Damsté  J S S (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74(16): 4639–4654
CrossRef Google scholar
[16]
Li F Y (1988). Determination of recent sedimentation rates by 210Pb method in the South China Sea. Mark Sci, 3: 64–66
[17]
Li F Y, Yuan  W (1991). Profile model of 210Pb in the South China Sea, South Huanghai Sea and Bohai Sea. Mar Geol & Quaternary Geol, 11(3): 35–43 (in Chinese)
[18]
Liu K K, Chao  S Y, Shaw  P T, Gong  G C, Chen  C C, Tang  T Y (2002). Monsoon-forces chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Res Part I Oceanogr Res Pap, 49(8): 1387–1412
CrossRef Google scholar
[19]
Lü  X, Yang  H, Song J,  Versteegh G J M,  Li X, Yuan  H, Li N,  Yang Y, Ding  W, Xie S (2014). Sources and distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) in sediments from the east coastal sea of China: application of GDGT-based paleothermometry to a shallow marginal sea. Org Geochem, 75: 24–35
CrossRef Google scholar
[20]
Murray A E, Blakis  A, Massana R,  Strawzewski S,  Passow U,  Alldredge A,  Delong E F (1999). A time series assessment of planktonic archaealvariability in the Santa Barbara Channel. Aquat Microb Ecol, 20: 129–145
CrossRef Google scholar
[21]
Ose T, Song  Y K, Kitoh  A (1997). Sea surface temperature in the South China Sea—An index for the Asian monsoon and ENSO system. J Meteorol Soc Jpn, 75: 1091–1107
[22]
Pernthaler A, Preston  C M, Pernthaler  J, DeLong E F,  Amann R (2002). Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol, 68(2): 661–667
CrossRef Google scholar
[23]
Pester M, Schleper  C, Wagner M (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol, 14(3): 300–306
CrossRef Google scholar
[24]
Peterse F, Kim  JH, Schouten S,  Kristensen DK,  Koc, N, Sinninghe Damsté  JS(2009). Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40: 692–699
[25]
Powers L, Werne  J P, Vanderwoude  A J, Sinninghe Damsté  J S, Hopmans  E C, Schouten  S (2010). Applicability and calibration of the TEX86 paleothermometer in lakes. Org Geochem, 41(4): 404–413
CrossRef Google scholar
[26]
Qu T D (2001). Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res, 106(C4): 6943–6955
CrossRef Google scholar
[27]
Schouten S, Hopmans  E C, Schefuß  E, Sinninghe Damste J S (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204(1): 265–274
CrossRef Google scholar
[28]
Schouten S, Huguet  C, Hopmans E C,  Kienhuis M M,  Sinninghe Damste J S (2007). Analytical Methodology for TEX86 Paleothermometry by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal Chem, 79(7): 2940–2944
CrossRef Google scholar
[29]
Schouten S, Pitcher  A, Hopmans E C,  Villanueva L,  van Bleijswijk J,  Sinninghe Damsté J S (2012). Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86. Geochim Cosmochim Acta, 98: 228–243
CrossRef Google scholar
[30]
Shah S R, Mollenhauer  G, Ohkouchi N,  Eglinton T I,  Pearson A (2008). Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis. Geochim Cosmochim Acta, 72(18): 4577–4594
CrossRef Google scholar
[31]
Shen S, Lau  M K (1995). Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J Meteorol Soc Jpn, 73(1): 105–124.
[32]
Shintani T, Yamamoto  M, Chen M T (2011). Paleoenvironmental changes in the northern South China Sea over the past 28,000 years: a study of TEX86-derived sea surface temperatures and terrestrial biomarkers. Journal of Asian Earth Science, 40(6): 1221–1229
[33]
Sinninghe Damsté JS,  Ossebaar J,  Abbas B,  Schouten S,  Verschuren D (2009). Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73: 4232–4249
[34]
Taylor K W R,  Huber M,  Hollis C J,  Hernandez-Sanchez M T,  Pancost R D (2013). Re-evaluating modern and Palaeogene GDGT distributions: implications for SST reconstructions. Global Planet Change, 108: 158–174
CrossRef Google scholar
[35]
Turich C, Freeman  K H (2011). Archaeal lipids record paleosalinity in hypersaline systems. Org Geochem, 42: 1147–1157
[36]
Turich C, Freeman  K H, Bruns  M A, Conte  M, Jones A D,  Wakeham S G (2007). Lipids of marine Archaea: patterns and provenance in the water-column and sediments. Geochim Cosmochim Acta, 71(13): 3272–3291 
CrossRef Google scholar
[37]
Villanueva L, Schouten  S, Sinninghe Damste′  J S (2014). Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ Microbiol, 10(17): 3527–3539
[38]
Walsh E M, Ingalls  A E, Keil  R G (2008). Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver – Washington Margin: a multiproxy approach using d13Corg, lignin phenols, and the ether lipid BIT index. Limnol Oceanogr, 53(3): 1054–1063
CrossRef Google scholar
[39]
Wang J X, Wei  Y L, Wang  P, Hong Y H,  Zhang C L (2015). Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: impact of changing archaeal community composition. Chem Geol, 402: 18–29
CrossRef Google scholar
[40]
Weber Y, De Jonge  C, Rijpstra W I C,  Hopmans E C,  Stadnitskaia A,  Schubert C J,  Lehmann M F,  Sinninghe Damsté J S,  Niemann H (2015). Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: evidence for lacustrine branched GDGT production. Geochim Cosmochim Acta, 154: 118–129
CrossRef Google scholar
[41]
Wei Y, Wang  J, Liu J,  Dong L, Li  L, Wang H,  Wang P, Zhao  M, Zhang C (2011). Spatial variations in Archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for Paleoclimate studies. Appl Environ Microbiol, 77(21): 7479–7489
CrossRef Google scholar
[42]
Weijers J W H,  Schouten S,  van den Donker J C,  Hopmans E C,  Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils Geochim Cosmochim Ac, 71(3): 703–713
[43]
Wuchter C, Schouten  S (2005). Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry. Paleoceanography, 20: PA3013, 
CrossRef Google scholar
[44]
Wuchter C, Schouten  S, Coolen M J L,  Sinninghe Damsté J S (2004). Temperature dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry.  Paleoceanography, 19, PA4028, 
CrossRef Google scholar
[45]
Xie W, Zhang  C L, Zhou  X D, Wang  P (2014). Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol, 98(18): 7971–7982
CrossRef Google scholar
[46]
Yang H, Pancost  R D, Tang  C, Ding W,  Dang X, Xie  S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79
CrossRef Google scholar
[47]
Zell C, Kim  J-H, Dorhout D,  Baas M, Sinninghe Damsté  J S (2015). Sources and distributions of branched tetraether lipids and crenarchaeol along the Portuguese continental margin: implications for the BIT index. Cont Shelf Res, 96: 34–44
CrossRef Google scholar
[48]
Zhang C L, Wang  J X, Wei  Y L, Zhu  C, Huang L Q,  Dong H L (2012). Production of branched tetraether lipids in the lower Pearl River and estuary: effects of extraction methods and impact on bGDGT proxies. Front Microbiol, 2(274): 1–18
[49]
Zhou H, Hu  J, Spiro B,  Peng P, Tang  J (2014). Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: indicators of sea surface temperature and effects of their sources. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 114–121
CrossRef Google scholar

Acknowledgments

We thank each member of the organic geochemistry group in the State Key Laboratory of Biogeology and Environmental Geology for technical support. We also thank Y.Qin, X. Chen and L. Gong from China University of Geosciences for help with data processing. The research was funded by the National Natural Science Foundation of China (Grant No. 41376090), the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences (XDA11020102), The Project of China Geological Survey (DD20160138), and Marine Safeguard Project (GZH201200503).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2165 KB)

Accesses

Citations

Detail

Sections
Recommended

/