Factors that affect coseismic folds in an overburden layer
Shaogang ZENG, Yongen CAI
Factors that affect coseismic folds in an overburden layer
Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young’s modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.
ground deformation / coseismic fold / blind thrust fault / finite element method
[1] |
Bernard S, Avouac J P, Dominguez S, Simoes M (2007). Kinematics of fault-related folding derived from a sandbox experiment. Journal of Geophysical Research, 112(B3): B03S12
CrossRef
Google scholar
|
[2] |
Brandes C, Tanner D C (2014). Fault-related folding: a review of kinematic models and their application. Earth Sci Rev, 138: 352–370
CrossRef
Google scholar
|
[3] |
Bray J D (2001). Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Seismic Fault-induced Failures: 55–80
|
[4] |
Chen G H, Xu X W, Zheng R Z, Yu G H, Li F, Li C X, Wen X Z, He Y L, Ye Y Q, Chen X C, Wang Z C (2008). Quantitative analysis of the co-seismic surface rupture of the 2008 Wenchuan earthquake, Sichuan, China along the Beichuan-Yingxiu fault. Dizhen Dizhi, 30(3): 723–738 (in Chinese)
|
[5] |
Cole D A Jr, Lade P V (1984). Influence zones in alluvium over dip-slip faults. J Geotech Eng, 110(5): 599–615
CrossRef
Google scholar
|
[6] |
Donald L T, Gerald S (2001). Geodynamics (2nd ed). Cambridge: Cambridge University Press, 78
|
[7] |
Galuppo C, Toscani G, Turrini C, Bonini L, Seno S (2016). Fracture patterns evolution in sandbox fault-related anticlines. Italian Journal of Geoscience, 135(1): 5–16
CrossRef
Google scholar
|
[8] |
Gudmundsson A (2004). Effect of Young’s modulus on fault displacement. C R Geosci, 336(1): 85–92
CrossRef
Google scholar
|
[9] |
Hardy S, Finch E (2006). Discrete element modeling of the influence of cover strength on basement-involved fault-propagation folding. Tectonophysics, 415(1‒4): 225–238
CrossRef
Google scholar
|
[10] |
Hu C B, Zhou Y J, Cai Y E, Wang C Y (2009). Study of earthquake triggering in a heterogeneous crust using a new finite element model. Seismol Res Lett, 80(5): 799–807
CrossRef
Google scholar
|
[11] |
Hubert-Ferrari A, Suppe J, Gonzalez-MieresR, Wang X (2007). Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Reseach, 112(B3): B03S09
CrossRef
Google scholar
|
[12] |
Hughes A N, Benesh N P, Shaw J H (2014). Factors that control the development of fault-bend versus faultpropagation folds: insights from mechanical models based on the discrete element method (DEM). J Struct Geol, 68: 121–141
CrossRef
Google scholar
|
[13] |
Ishiyama T, Sato H, Kato N, Nakayama T, Iwasaki T, Abe S (2011). Structures of active blind thrusts beneath Tokyo Metropolitan area. AGU Fall Meeting 2011, abstract T54B-02
CrossRef
Google scholar
|
[14] |
Johnson K M, Johnson A M (2002). Mechanical models of trishear-like folds. Journal of Structure Geology, 24(2): 277–287
CrossRef
Google scholar
|
[15] |
Lee J C, Chen Y G, Sieh K, Mueller K, Chen W S, Chu H T, Chan Y C, Rubin C, Yeats R (2001).A vertical exposure of the 1999 surface rupture of the Chelungpu Fault at WuFeng, Western Taiwan: structural and paleoseismic implications for an active thrust fault. Bulletin of the Seismological Society of America, 91(5): 914–929
CrossRef
Google scholar
|
[16] |
Lewis M M, Jackson C A L, Gawthorpe R L (2013). Salt-influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea. J Struct Geol, 54: 156–173
CrossRef
Google scholar
|
[17] |
Lin J, Stein R (1989). Coseismic folding, earthquake recurrence, and the 1987 source mechanism at Whittier Narrows, Los Angeles Basin, California. J Geophys Res, 94(B7): 9614–9632
CrossRef
Google scholar
|
[18] |
Miller R D, Xia J (1998). Large near-surface velocity gradients on shallow seismic reflection data. Geophysics, 63(4): 1348–1356
CrossRef
Google scholar
|
[19] |
Oglesby D D, Archuleta R J, Nielsen S B (1998). Earthquakes on dipping faults: the effects of broken symmetry. Science, 280(5366): 1055–1059
CrossRef
Google scholar
|
[20] |
Papadimitriou A, Loukidis D, Bouckovalas G, Karamitros D (2007). Zone of excessive ground surface distortion due to dip-slip fault rupture. 4th International Conference on Earthquake Geotechnical Engineering, Paper No.1583
|
[21] |
Qayyum M, Spratt D A, Dixon J M, Lawrence R D (2015). Displacement transfer from fault-bend to fault-propagation fold geometry: an example from the Himalayan thrust front. J Struct Geol, 77: 260–276
CrossRef
Google scholar
|
[22] |
Roering J J, Cooke M L, Pollard D D (1997). Why blind thrust faults do not propagate to the Earth’s surface: numerical modeling of coseismic deformation associated with thrust-related anticlines. Journal of Geophysical Reseach, 102(B6 B2): 11901–11912
CrossRef
Google scholar
|
[23] |
Shaw J H, Shearer P M (1999). An elusive blind-thrust fault beneath metropolitan Los Angeles. Science, 283(5407): 1516–1518
CrossRef
Google scholar
|
[24] |
Shaw J H, Suppe J (1996). Earthquake hazards of active blind-thrust faults under the central Los Angeles basin, California. J Geophys Res, 101(B4): 8623–8642
CrossRef
Google scholar
|
[25] |
Shi C X (1994). Materials Comprehensive Dictionary. Beijing: Chemical Industry Press (in Chinese)
|
[26] |
Suppe J (1983). Geometry and kinematics of fault-bend folding. Am J Sci, 283(7): 684–721
CrossRef
Google scholar
|
[27] |
Suppe J, Chou G T, Hook S C (1992). Rates of folding and faulting determined from growth strata. Thrust Tectonics, 105–121 doi: 10.1007/978-94-011-3066-0_9
|
[28] |
Turko J M, Knuepfer P L K (1991). Late Quaternary fault segmentation from analysis of scarp morphology. Geology, 19(7): 718–721
CrossRef
Google scholar
|
[29] |
Walker R T, Khatib M M, Bahroudi A, Rodés A, Schnabel C, Fattahi M, Talebian M, Bergman E (2015). Co-seismic, geomorphic, and geologic fold growth associated with the 1978 Tabas-e-Golshan earthquake fault in eastern Iran. Geomorphology, 237: 98–118
CrossRef
Google scholar
|
[30] |
Yu G, Xu X, Klinger Y, Diao G, Chen G, Feng X, Li C, Zhu A, Yuan R, Guo T, Sun X, Tan X, An Y (2010). Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China. Bull Seismol Soc Am, 100(5B): 2590–2614
CrossRef
Google scholar
|
[31] |
Xu X W, Wen X Z, Han Z J, Chen G H, Li C Y, Zheng W J, Zhnag S M, Ren Z Q, Xu C, Tan X B, Wei Z Y, Wang M M, Ren J J, He Z T, Liang M J (2013). Lushan Ms7.0 earthquake: a blind reserve-fault event. Chin Sci Bull, 58(28‒29): 3437–3443
CrossRef
Google scholar
|
[32] |
Yang J L, Ilic J G, Wardlaw T (2003). Relationships between static and dynamic moduli of elasticity for a mixture of clear and decayed eucalypt wood. Aust For, 66(3): 193–196
CrossRef
Google scholar
|
[33] |
Yang Y R, Hu J C, Lin M L (2014). Evolution of coseismic fault-related folds induced by the Chi-Chi earthquake: a case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling. J Asian Earth Sci, 79: 130–143
CrossRef
Google scholar
|
[34] |
Zhou Y J, Hu C B, Cai Y E (2009). Influence of an inhomogeneous stress field and fault-zone thickness on the displacements and stresses induced by normal faulting. J Struct Geol, 31(5): 491–497
CrossRef
Google scholar
|
[35] |
Zuluaga L F, Fossen H, Rotevatn A (2014). Progressive evolution of deformation band populations during Laramide fault-propagation folding: Navajo Sandstone, San Rafael monocline, Utah, U.S.A. Journal of Structural Geology, 68: 66–81
|
/
〈 | 〉 |