Factors that affect coseismic folds in an overburden layer

Shaogang ZENG , Yongen CAI

Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 17 -23.

PDF (857KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 17 -23. DOI: 10.1007/s11707-016-0618-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Factors that affect coseismic folds in an overburden layer

Author information +
History +
PDF (857KB)

Abstract

Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young’s modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

Keywords

ground deformation / coseismic fold / blind thrust fault / finite element method

Cite this article

Download citation ▾
Shaogang ZENG, Yongen CAI. Factors that affect coseismic folds in an overburden layer. Front. Earth Sci., 2018, 12(1): 17-23 DOI:10.1007/s11707-016-0618-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernard SAvouac  J PDominguez  SSimoes M (2007). Kinematics of fault-related folding derived from a sandbox experiment. Journal of Geophysical Research112(B3): B03S12

[2]

Brandes CTanner  D C (2014). Fault-related folding: a review of kinematic models and their application. Earth Sci Rev138: 352–370

[3]

Bray J D (2001). Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Seismic Fault-induced Failures: 55–80

[4]

Chen G HXu  X WZheng  R ZYu  G HLi  FLi C X Wen X Z He Y L Ye Y Q Chen X C Wang Z C (2008). Quantitative analysis of the co-seismic surface rupture of the 2008 Wenchuan earthquake, Sichuan, China along the Beichuan-Yingxiu fault. Dizhen Dizhi30(3): 723–738 (in Chinese)

[5]

Cole D A Jr, Lade P V (1984). Influence zones in alluvium over dip-slip faults. J Geotech Eng110(5): 599–615

[6]

Donald L TGerald  S (2001). Geodynamics (2nd ed). Cambridge: Cambridge University Press78

[7]

Galuppo CToscani  GTurrini C Bonini  L Seno S (2016). Fracture patterns evolution in sandbox fault-related anticlines. Italian Journal of Geoscience135(1): 5–16

[8]

Gudmundsson A (2004). Effect of Young’s modulus on fault displacement. C R Geosci336(1): 85–92

[9]

Hardy SFinch  E (2006). Discrete element modeling of the influence of cover strength on basement-involved fault-propagation folding. Tectonophysics415(1‒4): 225–238

[10]

Hu C BZhou  Y JCai  Y EWang  C Y (2009). Study of earthquake triggering in a heterogeneous crust using a new finite element model. Seismol Res Lett80(5): 799–807

[11]

Hubert-Ferrari ASuppe  JGonzalez-MieresR Wang X (2007). Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Reseach112(B3): B03S09

[12]

Hughes A NBenesh  N PShaw  J H (2014). Factors that control the development of fault-bend versus faultpropagation folds: insights from mechanical models based on the discrete element method (DEM). J Struct Geol68: 121–141

[13]

Ishiyama TSato  HKato N Nakayama T Iwasaki T Abe S (2011). Structures of active blind thrusts beneath Tokyo Metropolitan area. AGU Fall Meeting 2011, abstract T54B-02

[14]

Johnson K MJohnson  A M (2002). Mechanical models of trishear-like folds. Journal of Structure Geology24(2): 277–287

[15]

Lee J CChen  Y GSieh  KMueller K Chen W S Chu H T Chan Y C Rubin C Yeats R (2001).A vertical exposure of the 1999 surface rupture of the Chelungpu Fault at WuFeng, Western Taiwan: structural and paleoseismic implications for an active thrust fault.  Bulletin of the Seismological Society of America91(5): 914–929

[16]

Lewis M MJackson  C A LGawthorpe  R L (2013). Salt-influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea. J Struct Geol54: 156–173

[17]

Lin JStein  R (1989). Coseismic folding, earthquake recurrence, and the 1987 source mechanism at Whittier Narrows, Los Angeles Basin, California. J Geophys Res94(B7): 9614–9632

[18]

Miller R DXia  J (1998). Large near-surface velocity gradients on shallow seismic reflection data. Geophysics63(4): 1348–1356

[19]

Oglesby D DArchuleta  R JNielsen  S B (1998). Earthquakes on dipping faults: the effects of broken symmetry. Science280(5366): 1055–1059

[20]

Papadimitriou ALoukidis  DBouckovalas G Karamitros D (2007). Zone of excessive ground surface distortion due to dip-slip fault rupture. 4th International Conference on Earthquake Geotechnical Engineering, Paper No.1583

[21]

Qayyum MSpratt  D ADixon  J MLawrence  R D (2015). Displacement transfer from fault-bend to fault-propagation fold geometry: an example from the Himalayan thrust front. J Struct Geol77: 260–276

[22]

Roering J JCooke  M LPollard  D D (1997). Why blind thrust faults do not propagate to the Earth’s surface: numerical modeling of coseismic deformation associated with thrust-related anticlines. Journal of Geophysical Reseach102(B6 B2): 11901–11912

[23]

Shaw J HShearer  P M (1999). An elusive blind-thrust fault beneath metropolitan Los Angeles. Science283(5407): 1516–1518

[24]

Shaw J HSuppe  J (1996). Earthquake hazards of active blind-thrust faults under the central Los Angeles basin, California. J Geophys Res101(B4): 8623–8642

[25]

Shi C X (1994). Materials Comprehensive Dictionary. Beijing: Chemical Industry Press (in Chinese)

[26]

Suppe J (1983). Geometry and kinematics of fault-bend folding. Am J Sci283(7): 684–721

[27]

Suppe JChou  G THook  S C (1992). Rates of folding and faulting determined from growth strata. Thrust Tectonics, 105–121 doi: 10.1007/978-94-011-3066-0_9

[28]

Turko J MKnuepfer  P L K (1991). Late Quaternary fault segmentation from analysis of scarp morphology. Geology19(7): 718–721

[29]

Walker R TKhatib  M MBahroudi  ARodés A Schnabel C Fattahi M Talebian M Bergman E (2015). Co-seismic, geomorphic, and geologic fold growth associated with the 1978 Tabas-e-Golshan earthquake fault in eastern Iran. Geomorphology237: 98–118

[30]

Yu GXu   XKlinger Y Diao GChen  GFeng X Li CZhu  AYuan R Guo TSun  XTan X An Y (2010). Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China. Bull Seismol Soc Am100(5B): 2590–2614

[31]

Xu X WWen  X ZHan  Z JChen  G HLi  C YZheng  W JZhnag   S MRen  Z QXu  CTan X B Wei Z Y Wang M M Ren J J He Z T Liang M J (2013). Lushan Ms7.0 earthquake: a blind reserve-fault event. Chin Sci Bull58(28‒29): 3437–3443

[32]

Yang J LIlic  J GWardlaw  T (2003). Relationships between static and dynamic moduli of elasticity for a mixture of clear and decayed eucalypt wood. Aust For66(3): 193–196

[33]

Yang Y RHu  J CLin  M L (2014). Evolution of coseismic fault-related folds induced by the Chi-Chi earthquake: a case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling. J Asian Earth Sci79: 130–143

[34]

Zhou Y JHu  C BCai  Y E (2009). Influence of an inhomogeneous stress field and fault-zone thickness on the displacements and stresses induced by normal faulting. J Struct Geol31(5): 491–497

[35]

Zuluaga  L F Fossen  H Rotevatn  A (2014). Progressive evolution of deformation band populations during Laramide fault-propagation folding: Navajo Sandstone, San Rafael monocline, Utah, U.S.A. Journal of Structural Geology68: 66–81

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (857KB)

1141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/