Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN

PDF(1149 KB)
PDF(1149 KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (4) : 765-773. DOI: 10.1007/s11707-016-0603-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

Author information +
History +

Abstract

This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficientC and Gaussian kernel s for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.

Keywords

extreme learning machine / firefly algorithm / parameters optimization / hyperspectral image classification

Cite this article

Download citation ▾
Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery. Front. Earth Sci., 2017, 11(4): 765‒773 https://doi.org/10.1007/s11707-016-0603-2

References

[1]
Bao Y, Tian  Q, Chen M  (2015a). A weighted algorithm based on normalized mutual information for estimating the chlorophyll-a concentration in inland waters using geostationary ocean color imager(GOCI) data. Remote Sens, 7(9): 11731–11752
CrossRef Google scholar
[2]
Bao Y, Tian  Q, Chen M ,  Lin H (2015b). An automatic extraction method for individual tree crowns based on self-adaptive mutual information and tile computing. Int J Digit Earth, 8(6): 495–516
CrossRef Google scholar
[3]
Bazi Y, Alajlan  N, Melgani F ,  AlHichri H ,  Malek S ,  Yager R R  (2014). Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci Remote Sens Lett, 11(6): 1066–1070
CrossRef Google scholar
[4]
Bioucas-Dias J, Plaza  A, Camps-Valls G ,  Scheunders P ,  Nasrabadi N ,  Chanussot J  (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag, 1(2): 6–36
CrossRef Google scholar
[5]
Camps-Valls G, Tuia  D, Bruzzone L ,  Benediktsson J A  (2014). Advances in hyperspectral image classification: earth monitoring withstatistical learning methods. IEEE Signal Process Mag, 31(1): 45–54
CrossRef Google scholar
[6]
Chang C I (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification. New York: Kluwer Academic/Plenum Publishers, 13–15
[7]
Chen C, Li  W, Su H ,  Liu K (2014). Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens, 6(6): 5795–5814
CrossRef Google scholar
[8]
Cheng G, Zhu  F, Xiang S ,  Wang Y, Pan  C (2016). Semisupervised hyperspectral image classification via discriminant analysis and robust regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2): 595–608 doi:10.1109/JSTARS.2015.2471176
[9]
Cortes C, Vapnik  V (1995). Support vector networks. Mach Learn, 20(3): 273–297
CrossRef Google scholar
[10]
de Morsier F, Borgeaud  M, Gass V ,  Thiran J-P ,  Tuia, D (2016). Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images. IEEE Trans Geosci Remote Sens, 54(6):1–11
[11]
Hu F, Xia  G, Wang Z ,  Huang X ,  Zhang L ,  Sun H (2015). Unsupervised feature learning via spectral clustering of multi-dimensional patches for remotely sensed scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 2015–2030
CrossRef Google scholar
[12]
Huang G B, Ding  X, Zhou H  (2010). Optimization method based extreme learning machine for classification. Neurocomputing, 74(1‒3): 155–163
CrossRef Google scholar
[13]
Huang G B, Wang  D, Lan Y  (2011). Extreme learning machines: a survey. Int J Mach Learn & Cyber, 2(2): 107–122
CrossRef Google scholar
[14]
Huang G B, Zhu  Q Y, Siew  C K (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1‒3): 489–501
CrossRef Google scholar
[15]
Li W, Du  Q, Zhang F ,  Hu W (2015). Collaborative representation based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett, 12(2): 389–393
CrossRef Google scholar
[16]
Lin J, Huang  B, Chen M ,  Huang Z  (2014). Modeling urban vertical growth using cellular automata-Guangzhou as a case study. Appl Geogr, 53: 172–186
CrossRef Google scholar
[17]
Liu Q, He  Q, Shi Z  (2008). Extreme support vector machine classifier. Lect Notes Comput Sci, 5012: 222–233
CrossRef Google scholar
[18]
Lv Q, Niu  X, Dou Y ,  Xu J, Lei  Y(2016). Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geoscience and Remote Sensing Letters, 13(3):1–5
[19]
Melgani F, Bruzzone  L (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Rem Sens, 42(8): 1778–1790
CrossRef Google scholar
[20]
Pal M, Maxwell  A E, Warner  T A (2013). Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens Lett, 4(9): 853–862
CrossRef Google scholar
[21]
Ratle F, Camps-Valls  G, Weston J  (2010). Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans Geosci Rem Sens, 48(5): 2271–2282
CrossRef Google scholar
[22]
Samat A, Du  P, Liu S ,  Li J, Cheng  L (2014). E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1060–1069
CrossRef Google scholar
[23]
Senthilnath J, Omkar  S N, Mani  V (2011). Clustering using firefly algorithm: performance study. Swarm Evol Comput, 1(3): 164–171
CrossRef Google scholar
[24]
Su H, Yong  B, Du Q  (2016). Hyperspectral band selection using improved firefly algorithm. IEEE Geosci Remote Sens Lett, 13(1): 68–72
CrossRef Google scholar
[25]
Tan K, Zhou  S, Du Q  (2015). Semi-supervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci Remote Sens Lett, 12(8): 1765–1769
CrossRef Google scholar
[26]
Xue Z, Du  P, Su H  (2014). Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2131–2146
CrossRef Google scholar
[27]
Yang X, He  X (2013). Firefly algorithm: recent advances and applications. Int J Swarm Intelligence, 1(1): 36–50 doi:10.1504/IJSI.2013.055801
[28]
Yang X S (2009). Firefly Algorithms for Multimodal Optimization. Stochastic Algorithms: Foundations and Applications. Berlin Heidelberg: Springer-Verlag, 169–178
[29]
Zhang L, Zhang  L, Tao D ,  Huang X  (2012). On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans Geosci Rem Sens, 50(3): 879–893
CrossRef Google scholar
[30]
Zhang L, Zhang  Q, Zhang L ,  Tao D, Huang  X, Du B  (2015). Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit, 48(10): 3102–3112
CrossRef Google scholar
[31]
Zhen Z, Zhen  H, Li P  (2000). The parameters selection of genetic algorithms in texture classification. Acta Geodaetica et Cartographica Sinica, 29(1): 36–39

Acknowledgments

This paper was partially supported by National Natural Science Foundation of China (Grant Nos. 41571325 and 41201341), the Open Research Fund of Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (2014LDE003), and the Fundamental Research Funds for the Central Universities (2015B16814 and 2014B08514).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1149 KB)

Accesses

Citations

Detail

Sections
Recommended

/