Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficientC and Gaussian kernel s for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
extreme learning machine / firefly algorithm / parameters optimization / hyperspectral image classification
[1] |
Bao Y, Tian Q, Chen M (2015a). A weighted algorithm based on normalized mutual information for estimating the chlorophyll-a concentration in inland waters using geostationary ocean color imager(GOCI) data. Remote Sens, 7(9): 11731–11752
CrossRef
Google scholar
|
[2] |
Bao Y, Tian Q, Chen M , Lin H (2015b). An automatic extraction method for individual tree crowns based on self-adaptive mutual information and tile computing. Int J Digit Earth, 8(6): 495–516
CrossRef
Google scholar
|
[3] |
Bazi Y, Alajlan N, Melgani F , AlHichri H , Malek S , Yager R R (2014). Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci Remote Sens Lett, 11(6): 1066–1070
CrossRef
Google scholar
|
[4] |
Bioucas-Dias J, Plaza A, Camps-Valls G , Scheunders P , Nasrabadi N , Chanussot J (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag, 1(2): 6–36
CrossRef
Google scholar
|
[5] |
Camps-Valls G, Tuia D, Bruzzone L , Benediktsson J A (2014). Advances in hyperspectral image classification: earth monitoring withstatistical learning methods. IEEE Signal Process Mag, 31(1): 45–54
CrossRef
Google scholar
|
[6] |
Chang C I (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification. New York: Kluwer Academic/Plenum Publishers, 13–15
|
[7] |
Chen C, Li W, Su H , Liu K (2014). Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens, 6(6): 5795–5814
CrossRef
Google scholar
|
[8] |
Cheng G, Zhu F, Xiang S , Wang Y, Pan C (2016). Semisupervised hyperspectral image classification via discriminant analysis and robust regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2): 595–608 doi:10.1109/JSTARS.2015.2471176
|
[9] |
Cortes C, Vapnik V (1995). Support vector networks. Mach Learn, 20(3): 273–297
CrossRef
Google scholar
|
[10] |
de Morsier F, Borgeaud M, Gass V , Thiran J-P , Tuia, D (2016). Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images. IEEE Trans Geosci Remote Sens, 54(6):1–11
|
[11] |
Hu F, Xia G, Wang Z , Huang X , Zhang L , Sun H (2015). Unsupervised feature learning via spectral clustering of multi-dimensional patches for remotely sensed scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 2015–2030
CrossRef
Google scholar
|
[12] |
Huang G B, Ding X, Zhou H (2010). Optimization method based extreme learning machine for classification. Neurocomputing, 74(1‒3): 155–163
CrossRef
Google scholar
|
[13] |
Huang G B, Wang D, Lan Y (2011). Extreme learning machines: a survey. Int J Mach Learn & Cyber, 2(2): 107–122
CrossRef
Google scholar
|
[14] |
Huang G B, Zhu Q Y, Siew C K (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1‒3): 489–501
CrossRef
Google scholar
|
[15] |
Li W, Du Q, Zhang F , Hu W (2015). Collaborative representation based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett, 12(2): 389–393
CrossRef
Google scholar
|
[16] |
Lin J, Huang B, Chen M , Huang Z (2014). Modeling urban vertical growth using cellular automata-Guangzhou as a case study. Appl Geogr, 53: 172–186
CrossRef
Google scholar
|
[17] |
Liu Q, He Q, Shi Z (2008). Extreme support vector machine classifier. Lect Notes Comput Sci, 5012: 222–233
CrossRef
Google scholar
|
[18] |
Lv Q, Niu X, Dou Y , Xu J, Lei Y(2016). Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geoscience and Remote Sensing Letters, 13(3):1–5
|
[19] |
Melgani F, Bruzzone L (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Rem Sens, 42(8): 1778–1790
CrossRef
Google scholar
|
[20] |
Pal M, Maxwell A E, Warner T A (2013). Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens Lett, 4(9): 853–862
CrossRef
Google scholar
|
[21] |
Ratle F, Camps-Valls G, Weston J (2010). Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans Geosci Rem Sens, 48(5): 2271–2282
CrossRef
Google scholar
|
[22] |
Samat A, Du P, Liu S , Li J, Cheng L (2014). E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1060–1069
CrossRef
Google scholar
|
[23] |
Senthilnath J, Omkar S N, Mani V (2011). Clustering using firefly algorithm: performance study. Swarm Evol Comput, 1(3): 164–171
CrossRef
Google scholar
|
[24] |
Su H, Yong B, Du Q (2016). Hyperspectral band selection using improved firefly algorithm. IEEE Geosci Remote Sens Lett, 13(1): 68–72
CrossRef
Google scholar
|
[25] |
Tan K, Zhou S, Du Q (2015). Semi-supervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci Remote Sens Lett, 12(8): 1765–1769
CrossRef
Google scholar
|
[26] |
Xue Z, Du P, Su H (2014). Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2131–2146
CrossRef
Google scholar
|
[27] |
Yang X, He X (2013). Firefly algorithm: recent advances and applications. Int J Swarm Intelligence, 1(1): 36–50 doi:10.1504/IJSI.2013.055801
|
[28] |
Yang X S (2009). Firefly Algorithms for Multimodal Optimization. Stochastic Algorithms: Foundations and Applications. Berlin Heidelberg: Springer-Verlag, 169–178
|
[29] |
Zhang L, Zhang L, Tao D , Huang X (2012). On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans Geosci Rem Sens, 50(3): 879–893
CrossRef
Google scholar
|
[30] |
Zhang L, Zhang Q, Zhang L , Tao D, Huang X, Du B (2015). Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit, 48(10): 3102–3112
CrossRef
Google scholar
|
[31] |
Zhen Z, Zhen H, Li P (2000). The parameters selection of genetic algorithms in texture classification. Acta Geodaetica et Cartographica Sinica, 29(1): 36–39
|
/
〈 | 〉 |