Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model

Ya GAO, Zhanyong WANG, Qing-Chang LU, Chao LIU, Zhong-Ren PENG, Yue YU

PDF(1873 KB)
PDF(1873 KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (2) : 347-360. DOI: 10.1007/s11707-016-0593-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model

Author information +
History +

Abstract

A study on vertical variation of PM2.5 concentrations was carried out in this paper. Field measurements were conducted at eight different floor heights outside a building alongside a typical elevated expressway in downtown Shanghai, China. Results show that PM2.5 concentration decreases significantly with the increase of height from the 3rd to 7th floor or the 8th to 15th floor, and increases suddenly from the 7th to 8th floor which is the same height as the elevated expressway. A non-parametric test indicates that the data of PM2.5 concentration is statistically different under the 7th floor and above the 8th floor at the 5% significance level. To investigate the relationships between PM2.5 concentration and influencing factors, the Pearson correlation analysis was performed and the results indicate that both traffic and meteorological factors have crucial impacts on the variation of PM2.5 concentration, but there is a rather large variation in correlation coefficients under the 7th floor and above the 8th floor. Furthermore, the back propagation neural network based on principal component analysis (PCA-BPNN), as well as generalized additive model (GAM), was applied to predict the vertical PM2.5 concentration and examined with the field measurement dataset. Experimental results indicated that both models can obtain accurate predictions, while PCA-BPNN model provides more reliable and accurate predictions as it can reduce the complexity and eliminate data co-linearity. These findings reveal the vertical distribution of PM2.5 concentration and the potential of the proposed model to be applicable to predict the vertical trends of air pollution in similar situations.

Keywords

vertical variations / principal component analysis / back propagation neural network / generalized additive model / urban elevated expressway

Cite this article

Download citation ▾
Ya GAO, Zhanyong WANG, Qing-Chang LU, Chao LIU, Zhong-Ren PENG, Yue YU. Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model. Front. Earth Sci., 2017, 11(2): 347‒360 https://doi.org/10.1007/s11707-016-0593-0

References

[1]
Abdul-Wahab S A, Bakheit C S, Al-Alawi S M (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Model Softw, 20(10): 1263–1271
CrossRef Google scholar
[2]
Aldrin M, Haff I H (2005). Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos Environ, 39(11): 2145–2155
CrossRef Google scholar
[3]
Cai M, Yin Y, Xie M (2009). Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp Res Part D Transp Environ, 14(1): 32–41
CrossRef Google scholar
[4]
Carslaw D C, Beevers S D, Tate J E (2007). Modelling and assessing trends in traffic-related emissions using a generalised additive modelling approach. Atmos Environ, 41(26): 5289–5299
CrossRef Google scholar
[5]
Chan L Y, Kwok W S (2000). Vertical dispersion of suspended particulates in urban area of Hong Kong. Atmos Environ, 34(26): 4403–4412
CrossRef Google scholar
[6]
Colls J J, Micallef A (1999). Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon. Sci Total Environ, 235(1‒3): 221–233
CrossRef Google scholar
[7]
Chaloulakou  A, Saisana  M, Spyrellis  N (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment, 313(1): 1–13
[8]
Gardner  M W, Dorling  S R (2000). Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment, 34(1): 21–34
[9]
Hastie T J, Tibshirani R J (1990). Generalized additive models. London: Chapman and Hall 
[10]
He H D, Lu W Z (2012). Urban aerosol particulates on Hong Kong roadsides: size distribution and concentration levels with time. Stochastic Environ Res Risk Assess, 26(2): 177–187
CrossRef Google scholar
[11]
He H D, Lu W Z, Xue Y (2014). Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stochastic Environ Res Risk Assess, 29(8): 2107–2114
[12]
He J, Qi Z, Zhao C, Bao X (2009). Simulations of pollutant dispersion at toll plazas using three-dimensional CFD models. Transp Res Part D Transp Environ, 14(8): 557–566160;
CrossRef Google scholar
[13]
Kumar P, Fennell P, Langley D, Britter R (2008). Pseudo-simultaneous measurements for the vertical variation of coarse fine and ultrafine particles in an urban street canyon. Atmos Environ, 42(18): 4304–4319
CrossRef Google scholar
[14]
Kumar P, Garmory A, Ketzel M, Berkowicz R, Britter R (2009). Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon. Atmos Environ, 43(4): 949–958
CrossRef Google scholar
[15]
Li X, Wang J, Tu X D, Liu W, Huang Z (2007). Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China. Sci Total Environ, 378(3): 306–316
CrossRef Google scholar
[16]
Longley I D, Gallagher M W, Dorsey J R, Flynn M (2004). A case-study of fine particle concentrations and fluxes measured in a busy street canyon in Manchester, UK. Atmos Environ, 38(22): 3595–3603
CrossRef Google scholar
[17]
Mazzoleni C, Moosmüller H, Kuhns H D, Keislar R E, Barber P W, Nikolic D, Nussbaum N J, Watson J G (2004). Correlation between automotive CO, HC, NO, and PM emission factors from on-road remote sensing: implications for inspection and maintenance programs. Transp Res Part D Transp Environ, 9(6): 477–496
CrossRef Google scholar
[18]
McNabola A, Broderick B M, Gill L W (2009). The impacts of inter-vehicle spacing on in-vehicle air pollution concentrations in idling urban traffic conditions. Transp Res Part D Transp Environ, 14(8): 567–575
CrossRef Google scholar
[19]
Milionis  A E, Davies  T D (1994). Box-Jenkins univariate modelling for climatological time series analysis: an application to the monthly activity of temperature inversions. International Journal of Climatology, 14(5): 569–579.
[20]
Moseholm L, Silva J, Larson T (1996). Forecasting carbon monoxide concentrations near a sheltered intersection using video traffic surveillance and neural networks. Transp Res Part D Transp Environ, 1(1): 15–28
CrossRef Google scholar
[21]
Muñoz E, Martin M L, Turias I J, Jimenez-Come M J, Trujillo F J (2014). Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain. Stochastic Environ Res Risk Assess, 28(6): 1409–1420
CrossRef Google scholar
[22]
Nagendra S S, Khare M (2006). Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol Modell, 190(1‒2): 99–115
CrossRef Google scholar
[23]
Ng  H K T, Balakrishnan  N, Panchapakesan  S (2007). Selecting the best population using a test for equality based on minimal Wilcoxon rank-sum precedence statistic. Methodology and Computing in Applied Probability, 9(2): 263–305
[24]
Schleicher N J, Norra S, Chai F, Chen Y, Wang S, Cen K, Yu  Y, Stüben D (2011). Temporal variability of trace metal mobility of urban particulate matter from Beijing–A contribution to health impact assessments of aerosols. Atmos Environ, 45(39): 7248–7265
CrossRef Google scholar
[25]
Schlink U, Dorling S, Pelikan E, Nunnari G, Cawley G, Junninen H, Greig  A, Foxall  R, Eben  K, Chatterton  T, Vondracek  J, Richter  M, Dostal  M, Bertucco  L, Kolehmainen  M, Doyle M (2003). A rigorous inter-comparison of ground-level ozone predictions. Atmos Environ, 37(23): 3237–3253
CrossRef Google scholar
[26]
Sousa S I V, Martins F G, Alvim-Ferraz M C M, Pereira M C (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw, 22(1): 97–103
CrossRef Google scholar
[27]
Tang T Q, Huang H J, Shang H Y (2015c). Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Transp Res Part D Transp Environ, 41: 423–432
CrossRef Google scholar
[28]
Tang T Q, Yu Q, Yang S C, Ding C (2015a). Impacts of the vehicle’s fuel consumption and exhaust emissions on the trip cost allowing late arrival under car-following model.  Physica A: Statistical Mechanics and its Applications,  431: 52–62
[29]
Tang  T Q, Li  J G, Yang  S C, Shang  H Y (2015b). Effects of on-ramp on the fuel consumption of the vehicles on the main road under car-following model.  Physica A: Statistical Mechanics and its Applications,  419: 293–300
[30]
Wang J S, Chan T L, Ning Z, Leung C W, Cheung C S, Hung W T (2006). Roadside measurement and prediction of CO and PM2.5 dispersion from on-road vehicles in Hong Kong. Transp Res Part D Transp Environ, 11(4): 242–249
CrossRef Google scholar
[31]
Wang J S, Huang Z (2002). Numerical study on impact of urban viaduct on local-scale of atmospheric environment. Shanghai Environmental Sciences, 21(3): 132–135
[32]
Wang Z, He H D, Lu F, Lu Q C, Peng Z R (2015a). Hybrid model for prediction of carbon monoxide and fine particulate matter concentrations near a road intersection. Transp Res Rec, 2503: 29–38
CrossRef Google scholar
[33]
Wang Z, Lu F, He  H D, Lu Q C, Wang D, Peng Z R (2015b). Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm. Atmos Environ, 104: 264–272
CrossRef Google scholar
[40]
Wang Z, Lu Q C, He  H D, Wang D, Gao Y, Peng Z R (2016). Investigation of the spatiotemporal variation and influencing factors on fine particulate matter and carbon monoxide concentrations near a road intersection. Front. Earth Sci., doi: 10.1007/s11707-016-0564-5
[34]
Weber S, Kuttler W, Weber K (2006). Flow characteristics and particle mass and number concentration variability within a busy urban street canyon. Atmos Environ, 40(39): 7565–7578
CrossRef Google scholar
[35]
Wood S N, Augustin N H (2002). GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Modell, 157(2‒3): 157–177
CrossRef Google scholar
[36]
Zhang  C J, Zeng  J R, Wen  M, Zhang  G L, Fang  H P, Li  Y (2012). Influence of Viaducts on Dispersion of Air Particles in Street Canyons. Research of Environmental Sciences, 25(2): 159–164.
[37]
Zhang D Z, Peng Z R (2014). Near-road fine particulate matter concentration estimation using artificial neural network approach. Int J Environ Sci Technol, 11(8): 2403–2412
CrossRef Google scholar
[38]
Zhang K, Batterman S (2010). Near-road air pollutant concentrations of CO and PM2.5: A comparison of MOBILE6. 2/CALINE4 and generalized additive models. Atmos Environ, 44(14): 1740–1748
CrossRef Google scholar
[39]
Zhang L D, Zhu W X (2015). Delay-feedback control strategy for reducing emission of traffic flow system.  Physica A: Statistical Mechanics and its Applications,  428: 481–492

Acknowledgments

The authors would like to acknowledge the support from Shanghai Environmental Protection Bureau, Shanghai Environmental Monitoring Center, Science Technology Department of Zhejiang Province (2014C31028), Peking University-Lincoln Institute (DS20120901), and State Key Laboratory of Ocean Engineering of China (GKZD010059). We thank members from Shanghai Environmental Monitoring Center for their assistance in instrumental calibration. We also appreciate members from the Center for ITS and UAV Applications Research at Shanghai Jiao Tong University for their hard work in data collection and processing.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1873 KB)

Accesses

Citations

Detail

Sections
Recommended

/